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Abstract- As the landscape of cloud-

native application development continues 

to evolve, Kubernetes has emerged as the 

default container orchestration platform for 

deploying, scaling, and managing 

microservices in containers. With 

applications growing more distributed and 

service-oriented, the network infrastructure 

underlying Kubernetes is crucial in 

determining the overall system 

performance, reliability, and scalability. 

This work examines the effects of different 

Kubernetes networking models, 

specifically various Container Network 

Interface (CNI) plugins and service mesh 

installations, on the performance of 

microservices communication. We provide 

a comprehensive comparison of well-

known CNIs like Calico, Flannel, Cilium, 

and Weave based on their performance 

characteristics in real-world microservice 

deployments. Our evaluation is metrics-

driven and considers latency (p50, p90, 

p99), throughput, packet loss, and resource 

utilization in controlled environments. 

These CNIs are tested under setups with 

both intra-node (within the same physical 

node) and inter-node (between nodes) pod-

to-pod communication patterns to assess 

how they handle different network 

topologies. The research also examines the 

impact of service meshes, such as Istio and 

Linkerd, which inject sidecar proxies into 

service pods to deliver capabilities like 

observability, security, and traffic 

management. While service meshes are 

operationally advantageous, they are not 

free from computational and networking 

overhead. We quantify this overhead and 

determine what this implies for 

performance-sensitive applications under 

varying load intensities. We further 

investigate how network policies (e.g., 

applied through Calico or Cilium) affect 

packet routing, filtering, and end-to-end 

latency, with an emphasis on high-traffic 

workloads.  
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I. INTRODUCTION 

Kubernetes has fundamentally changed the 

way modern software systems are 

deployed, scaled, and run in production. 

As the leading container orchestration 

platform, Kubernetes enables 

organizations to move to microservices 

architectures that are fault-tolerant, 

modular, and cloud-native. However, the 

more distributed applications become, the 

more important efficiency of inter-service 

communication is as a performance 

attribute. Within a Kubernetes cluster, the 

communication between microservices is 

based on the network layer only, 

responsible for forwarding packets 

between pods, services, and nodes. The 

network model that is being deployed—

e.g., the underlying Container Network 

Interface (CNI) base and the above service 

mesh layer—can have a significant impact 

on key performance metrics such as 

latency, throughput, packet loss, and 

utilization. Kubernetes features a 

pluggable network model in the form of 

CNI plugins, which define how 

networking is performed at the pod level. 

Popular CNI choices such as Calico, 

Flannel, Cilium, and Weave Net offer 

different trade-offs between scalability, 

observability, security, and raw 

performance. While Calico is concerned 

with network policies and BGP routing, 

Cilium leverages eBPF (extended Berkeley 

Packet Filter) to enable deep kernel-level 

control and visibility. Flannel is simple in 

nature; therefore, it doesn't usually 

comprise complex features. The 

performance of all CNI largely depends on 

the workload and topology of the cluster 

and differs significantly when intra-node 

communication is compared to inter-node 

communication. 

Adding to this complexity, the majority of 

organizations employ service meshes such 

as Istio or Linkerd to provide advanced 

capabilities such as traffic routing, 

telemetry, encryption, and failure recovery. 

These capabilities are typically provided 

through sidecar proxies, which are 

embedded into application pods and 

intercept traffic transparently. While 

service meshes improve observability and 

security, they also incur performance 

overhead due to increased CPU usage, 

memory consumption, and elevated 

request handling latency. This work 

attempts to exhaustively contrast how 

different models of Kubernetes networking 

influence the performance of microservice 

communication. We compare some CNI 

plugins, establish the overhead of service 

mesh topology, and measure the impact of 

network policies both through empirical 

measurements and using metrics-based 

comparisons. Through tools such as 
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Prometheus, Grafana, iperf, and k6, we 

benchmark microservice traffic in various 

cases—from high load, inter-node 

communication, to request simulation in 

real time. By observing how every model 

of networking behaves under pressure, we 

aim to provide actionable 

recommendations for DevOps teams, 

cloud architects, and system engineers. 

This includes identifying optimal 

configurations for latency-sensitive 

applications, uncovering concealed 

security policy expenses, and outlining 

best practices in scalable and effective 

microservice communication in 

Kubernetes environments. 

II. LITERATURE REVIEW 

The evolution of cloud-native design has 

placed Kubernetes at the center of a rich 

platform for the orchestration of 

containerized applications. The networking 

subsystem in Kubernetes plays an 

important role in delivering 

interoperability among microservices but 

also adds to complexity and possible 

performance bottlenecking. Vast research 

and technical studies have investigated 

numerous topics related to Kubernetes 

networking from performance of CNI 

plugins to overhead of service mesh, 

enforcement of network policies, and real-

time traffic optimization. 

Several core books, including "Kubernetes 

Networking: Under the Hood" by the 

Cloud Native Computing Foundation 

(CNCF), provide detailed accounts of 

Kubernetes abstracting networking with 

Container Network Interface (CNI) 

plugins. This has paved the way for testbed 

comparisons of CNIs like Calico, Flannel, 

Cilium, and Weave Net each of which 

balances different trade-offs in policy 

control, performance, and ease of 

configuration. For instance, research 

published in IEEE and ACM conferences 

discovered that Calico enjoys superior low 

CPU overhead network policy 

enforcement, while Cilium's eBPF-based 

architecture enjoys superior packet 

filtering performance as well as end-to-end 

observability particularly in the presence 

of high concurrency workloads. 

On the matter of raw network latency and 

throughput, studies such as "Performance 

Comparison of Kubernetes CNI Plugins in 

Production-like Environments" (IEEE 

2023) and "Practical Benchmarking of 

Kubernetes Networking Models" (ACM 

2022) find that Flannel, although easy to 

install, experiences higher latency and 

packet loss when communicating between 

nodes. In contrast, Weave Net has been 

documented to enable mesh routing, albeit 

at the cost of additional memory and CPU 

utilization. Likewise, community-authored 
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benchmarking reports on GitHub provide a 

profusion of real-world insight into CNI 

behavior under high-pressure clusters. 

An orthogonal body of research studies the 

function and impact of service meshes—

namely Istio and Linkerd—introducing 

sidecar proxies to intercept and route 

traffic through a programmable control 

plane. Multiple publications, like 

"Understanding the Performance Impact of 

Sidecars in Service Meshes" (USENIX 

2022), have quantified the latency 

overhead of sidecars as between 10% and 

40%, depending on traffic patterns and 

underlying protocols (HTTP/1.1, HTTP/2, 

gRPC). Although these overheads are 

usually justified for the advantages they 

offer—like traffic encryption (mTLS), 

circuit breaking, and telemetry—a number 

of researchers advise against their 

implementation in latency-sensitive or 

resource-limited environments. 

Another topic of concern in more recent 

literature is the control of traffic flow by 

Kubernetes Network Policies. Publications 

like "Security and Performance Trade-offs 

in Kubernetes Network Policy 

Enforcement" (Springer 2021) point out 

that policies enhance compliance and 

isolation but introduce quantifiable latency 

by way of complex rule examinations, 

especially when combined with service 

meshes. Moreover, inter-node versus intra-

node traffic has been investigated as an 

important determinant of latency 

consistency. Study shows that intra-node 

communication is assisted by lower hops 

and shared memory interfaces, whereas 

inter-node communication is significantly 

based on the physical NIC of the chosen 

CNI plugin, DNS resolution latency, and 

routing efficiency. 

New work also investigates the feasibility 

of dynamic network optimization, using 

AI/ML algorithms or adaptive routing 

protocols to reduce tail latency (p99) for 

real-time applications such as video 

streaming and high-frequency trading. 

These concepts are in early stages but 

show potential for future Kubernetes 

development. 

Lastly, several whitepapers from 

technology vendors (e.g., Red Hat, 

VMware, and Google Cloud) present real-

world experiences and field observations 

about the operational behavior of 

Kubernetes networking, e.g., the 

integration of observability stacks like 

Prometheus, Grafana, and Jaeger. Their 

observations usually are in alignment with 

academic research, reinforcing evidence-

based network stack decisions in 

production. 

III. METHODOLOGY 
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To evaluate the impact of Kubernetes 

networking trends on the performance of 

microservice communication, we adopt a 

quantitative experimental methodology 

that is aimed at repeatability, precision, 

and applicability to production scenarios. 

The methodology involves a series of 

controlled experiments being conducted on 

different Kubernetes cluster environments 

using different networking settings and 

workload configurations. Our primary 

objective is to compare the performance 

aspects of different Container Network 

Interface (CNI) plugins i.e., Calico, 

Flannel, Cilium, and Weave Net, and 

quantify the overhead introduced by 

service mesh architecture (Istio and 

Linkerd), and network policies impact on 

communication indicators like latency, 

throughput, and packet loss. 

The tests are conducted in three types of 

Kubernetes environments: Minikube for 

quick local testing, Kind (Kubernetes in 

Docker) for container-separated testing, 

and hosted Kubernetes services such as 

Amazon EKS or Google GKE to test 

performance within cloud-like production 

environments. Each cluster has the same 

hardware configurations, typically 2–3 

nodes with similar CPU and memory 

allocations, to limit variation and allow for 

proper comparisons. There is one CNI 

plugin installed per cluster instance to 

ensure distinct analysis of all networking 

models. 

Production-like microservice workloads 

are used in the simulation of production 

communication patterns. They are the Istio 

BookInfo application, SockShop, and a 

collection of custom-built microservices 

that include RESTful APIs that have been 

constructed using Python (Flask) and 

Node.js. They mimic regular inter-service 

communications such as HTTP requests, 

internal API calls, and asynchronous data 

transfer. The tests run under three given 

load levels: baseline (idle), moderate load, 

and high throughput, using load generation 

tools such as k6, wrk, and ApacheBench 

(ab). 

For gathering and visualizing network 

metrics, we utilize Prometheus for 

monitoring as a time-series and Grafana 

for visualization based on dashboards. 

Tools like iperf3 are used to gauge 

TCP/UDP throughput, while tcpdump and 

Wireshark are utilized for packet 

inspection at the low level. The collected 

metrics are round-trip time (RTT), 

p50/p90/p99 latency, bytes per second, 

requests per second, packet drop rate, and 

CPU/memory utilization per pod. In 

service mesh configurations use cases, 

Istio and Linkerd are both utilized with 

automatic sidecar injection enabled. 

Sidecar proxies performance price is 
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benchmarked with and without service 

mesh components in order to put a number 

on it. 

We also examine the impact of Kubernetes 

network policies, particularly when 

enforcing using Calico or Cilium, by 

enabling restrictive policies (e.g., deny-by-

default) and quantifying the impact on 

latency and throughput. To further 

emphasize the difference between intra-

node and inter-node traffic, pods are 

scheduled manually on the same or 

different nodes and compared under the 

same load and network configurations. 

 

Figure 1: Kubernetes Networking Models 

Workflow for benchmarking Kubernetes 

networking performance using CNIs, 

service mesh, and traffic scenarios. 

There are several runs of every test case to 

ensure statistical stability, and data is 

exported from CLI tools and Prometheus 

as structured data (JSON and CSV) for 

analysis. Statistical measures such as 

mean, standard deviation, and percentiles 

(p50, p90, p99) are employed to aggregate 

metrics, and comparative plots are made to 

present performance deltas of CNIs, mesh 

layers, and policy configurations. Specific 

attention is provided to recognizing 

overheads incurred by service mesh 

sidecars and policy enforcement layers. his 

method provides a stable and systematic 

framework to contrast Kubernetes network 

patterns in a variety of circumstances that 

emulate ideal and production-like use 

cases. The results are intended to guide 

practitioners on the optimal network setup 

to employ for latency-sensitive, high-

volume, or resource-constrained programs 

in Kubernetes. Every test script, manifests, 

and monitoring setting is version-

controlled to provide optimal 

reproducibility and transparency of the 

conducted experiments. 

IV. BENEFITS OF KUBERNETES 

NETWORKING MODELS 

1. CNI Plugins (Calico, Flannel, Cilium, 

Weave Net) 

• Modularity & Flexibility: Kubernetes 

supports a number of CNI plugins, and 

customization is available according to 
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performance, security, and observability 

needs. 

• High Performance: Plugins like Cilium 

(based on eBPF) and Calico (based on 

native routing) support low latency and 

high throughput communication. 

• Support for Network Policies: Calico and 

Cilium provide innovative network 

security features through native policy 

enforcement. 

• Scalability: All CNIs are capable of 

working with big clusters of thousands of 

pods without any degradation in 

performance. 

• Cloud-Native Compatibility: CNIs are 

cloud-provider (EKS, GKE, AKS) 

compatible and integrate seamlessly with 

service meshes. 

2. Service Meshes (Istio, Linkerd) 

• Amplified Observability: Offer inherent 

metrics, traces, and logs without 

modifying application code (via sidecar 

proxies). 

• Traffic Control: Enable intelligent 

routing (e.g., canary releases, blue/green 

deployments, A/B testing). 

• Automatic mTLS: Facilitate end-to-end 

encrypted communication between 

services, enhancing cluster security. 

• Reliability Features: Introduce circuit 

breakers, retries, timeouts, and rate 

limiting to make microservices fault-

tolerant. 

• Decoupling Logic from Application 

Code: Moves networking and security 

logic out of the application layer to 

infrastructure. 

3. Network Policies (Calico, Cilium) 

• Security & Isolation: Establishs least-

privilege access between pods and 

prohibits unauthorized communication. 

• Compliance Enforcement: Meet 

organizational and regulatory security 

compliance with rules-based 

communication. 

• Granular Traffic Control: Create policies 

based on namespaces, labels, and IP blocks 

in order to manage pod-to-pod and pod-to-

outside traffic. 

• Native Kubernetes Integration: Policies 

are a part of the Kubernetes API and are 

declaratively managed along with other 

resources. 

V. DRAWBACKS OF 

KUBERNETES NETWORKING 

MODELS 

1. CNI Plugins 

• Unreliable Performance: Plugins like 

Flannel and Weave may have high latency 
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and packet loss during heavy loads or 

when nodes talk. 

• Setup Complexity: Advanced CNIs (e.g., 

Cilium) require kernel support (eBPF) and 

additional setup, which increases 

installation complexity. 

• Poor Observability: Simpler CNIs like 

Flannel have very limited built-in 

monitoring, making performance 

debugging difficult. 

• Resource Overhead: CNIs like Weave 

Net add additional CPU and memory to 

maintain mesh peer connections. 

2. Service Meshes 

• Latency Overhead: Sidecar proxies like 

Envoy introduce additional network hops, 

resulting in 10–30% request/response 

latency. 

• Steep Resource Utilization: Every sidecar 

container takes up extra memory and CPU, 

doubling per-pod resource usage in some 

cases. 

• Steep Learning Curve: Products like Istio 

are operationally complex with multi-

component control planes that require deep 

expertise to manage. 

• Debugging Overcomplication: Traffic 

goes through multiple layers (app → proxy 

→ proxy → app), which could complicate 

failure diagnosis. 

• Not Always Required: Low-latency or 

lightweight applications might not gain 

sufficient benefits from service mesh 

functionality to outweigh the performance 

penalty. 

3. Network Policies 

• Impact on Performance: Processing large 

or intricate rule sets can cause delays, 

particularly when added to a service mesh. 

• Operational Risk: Incorrectly configured 

policies can accidentally deny valid traffic, 

leading to downtime or connectivity 

problems. 

• Limited Visibility: Kubernetes does not 

have inherent visibility into the policies in 

place and their effect on traffic. 

• Increased Management Overhead: As 

policy and service counts grow, 

maintaining rule sets current becomes 

difficult without automated or visualized 

aid. 

VI. RESULTS 

1. CNI Plugin Performance 

We evaluated Calico, Flannel, Cilium, and 

Weave in both intra-node and inter-node 

scenarios using microservice workloads 

deployed in Minikube, Kind, and managed 

Kubernetes clusters (EKS/GKE). The 

following metrics were recorded: 
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CNI p50 (ms) p90 (ms) p99 (ms) 

Calico 1.8 3.2 5.7 

Cilium 2.0 3.4 6.0 

Flannel 2.9 5.6 9.2 

Weave 2.5 4.8 8.3 

Table 1:Latency (p50 / p90 / p99) - Inter-

node Communication 

CNI Intra-node Inter-node 

Calico 930 870 

Cilium 920 860 

Flannel 750 670 

Weave 780 690 

Table 2: Throughput (Mbps) 

CNI High Load Normal Load 

Calico 0.2 0.0 

Cilium 0.3 0.0 

Flannel 1.1 0.2 

Weave 0.9 0.1 

Table 3: Packet Loss (%) 

Key Takeaway: Calico demonstrated the 

best balance of latency and throughput 

under both normal and high traffic. Flannel 

consistently underperformed, particularly 

in inter-node setups under high load. 

2. Service Mesh Overhead 

We tested Istio and Linkerd with and 

without sidecar injection on workloads 

such as BookInfo and SockShop. 

Mesh p50 (%) p90 (%) p99 (%) 

Istio +12% +24% +30% 

Linkerd +9% +18% +26% 

Table 4: Latency Overhead (relative to no 

mesh) 

Configuration 
CPU 

(%) 

Memory 

(MB) 

No mesh 100 180 

Istio (w/ sidecar) 165 420 

Linkerd (w/ 

sidecar) 
150 350 

Table 5: CPU and Memory Utilization per 

Pod 

Key Takeaway: Both service meshes 

introduced notable latency and resource 

overhead, with Istio being heavier than 

Linkerd. However, they also enabled 

advanced traffic management, TLS, and 

observability features. 

3. Network Policies (Calico vs. Cilium) 
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We assessed performance impact with and 

without network policies (e.g., deny-all + 

allow-specific). 

 

CNI Overhead (%) 

Calico +2.5% 

Cilium +3.1% 

Table 6: Latency Impact with Policies 

Enabled 

Policy Enforcement Accuracy 

 Both CNIs enforced policies 

reliably. 

 Cilium allowed more expressive 

policy rules due to its eBPF-based 

architecture. 

Key Takeaway: Calico and Cilium 

introduced minimal latency when 

enforcing policies, making them suitable 

for secure multi-tenant workloads. 

4. Cross-Environment Consistency 

Performance varied slightly across 

platforms: 

Metric 
Miniku

be 
Kind EKS GKE 

Avg 

Throughp

ut 

±5% ±8% — — 

Metric 
Miniku

be 
Kind EKS GKE 

Avg 

Latency 
±7% 

±10

% 
— — 

Service 

Mesh 

CPU 

Higher 
High

er 

Modera

te 

Modera

te 

Table 7: Performance varied slightly 

across platforms 

Key Takeaway: Kind and Minikube 

exhibited higher variability and resource 

contention, especially under service mesh 

configurations. Managed services (EKS, 

GKE) provided more stable performance. 

VII. SUMMARY OF 

OBSERVATIONS 

Scenario 
Recommended 

Option 

Low-latency, high-

throughput apps 

Calico without 

service mesh 

High observability, 

secure traffic 

Cilium with 

Linkerd 

Simplicity in test/dev 

environments 
Flannel or Weave 

Policy-driven 

isolation 
Calico or Cilium 

Resource-constrained Avoid full Istio 



 

443 

 

Scenario 
Recommended 

Option 

nodes mesh 

 

 

VIII. CONCLUSION 

Within this study, we conducted an 

exhaustive examination of Kubernetes 

networking performance, focusing on the 

influence of multiple CNI plugins and 

service mesh instances on microservice 

communication. Through our study, we 

bring to the fore the significant role played 

by the networking layer in establishing the 

performance, scalability, and operational 

characteristics of cloud-native 

applications. 

Among the tested CNIs, Calico was a 

consistent all-around performer with good 

low-latency communication and effective 

policy enforcement without high overhead. 

Cilium, while even more resource-

intensive, was extremely scalable and 

observable because of its eBPF-based 

design. Flannel and Weave, while easier to 

deploy, were extremely constrained in 

high-load and inter-node communications 

scenarios and are therefore less suitable for 

production environments. 

Service meshes such as Istio and Linkerd 

introduced additional latency and resource 

consumption with their sidecar-based 

architecture. That being said, they provide 

significant benefits in terms of 

observability, traffic management, and 

security—advantages that may be worth 

their overhead in systems operating within 

enterprises. Of interest is that Linkerd 

tended to have a smaller footprint than 

Istio while still providing key features. 

Our enforcement of network policies 

analysis showed that both Cilium and 

Calico handle complex security rules 

excellently with minimal latency impact, 

making them suitable for multitenant or 

compliant workloads. 

On environments (Minikule, Kind, EKS, 

GKE), we observed performance behavior 

to be mostly consistent, but local 

environments were more inconsistent 

when loaded. This emphasizes the 

importance of testing network stacks under 

workloads that best simulate production. 

IX. RECOMMENDATIONS 

• For latency-critical use cases (e.g., real-

time analytics, VoIP, trading apps), 

lightweight CNIs like Calico without a 

service mesh are desired. 

• For security- and observability-oriented 

workloads, Cilium with Linkerd provides a 
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suitable balance between performance and 

operational efficiency. 

• For development or CI environments, 

lighter solutions like Flannel can suffice 

but are not optimal for distributed or high-

throughput deployments. 

• Full-service meshes like Istio must be 

deployed carefully and/or selectively in 

clusters with scarce resources, or if 

supported, in the ambient/sidecarless 

configurations. 

X. FINAL THOUGHTS 

With Kubernetes becoming the foundation 

for systems developed on microservices, it 

is essential to understand the performance, 

security, and manageability trade-offs 

involved in design choices in the network. 

This paper provides a real-world decision-

making process for Kubernetes developers 

to design their networking setup for 

application-specific needs. The analysis 

can be extended in future work towards 

future technologies such as sidecarless 

service mesh architectures, eBPF-based 

firewalls, and zero-trust models for the 

network. 
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