

433

EVALUATING THE IMPACT OF KUBERNETES

NETWORKING MODELS ON MICROSERVICE

COMMUNICATION PERFORMANCE

Vimal Daga

CTO, LW India | Founder,

#13 Informatics Pvt Ltd

LINUX WORLD PVT.

LTD.

Preeti Daga

CSO, LW India | Founder,

LWJazbaa Pvt Ltd

LINUX WORLD PVT.

LTD.

Abdul Muhafeez

Research Scholar

LINUX WORLD PVT.

LTD.

Abstract- As the landscape of cloud-

native application development continues

to evolve, Kubernetes has emerged as the

default container orchestration platform for

deploying, scaling, and managing

microservices in containers. With

applications growing more distributed and

service-oriented, the network infrastructure

underlying Kubernetes is crucial in

determining the overall system

performance, reliability, and scalability.

This work examines the effects of different

Kubernetes networking models,

specifically various Container Network

Interface (CNI) plugins and service mesh

installations, on the performance of

microservices communication. We provide

a comprehensive comparison of well-

known CNIs like Calico, Flannel, Cilium,

and Weave based on their performance

characteristics in real-world microservice

deployments. Our evaluation is metrics-

driven and considers latency (p50, p90,

p99), throughput, packet loss, and resource

utilization in controlled environments.

These CNIs are tested under setups with

both intra-node (within the same physical

node) and inter-node (between nodes) pod-

to-pod communication patterns to assess

how they handle different network

topologies. The research also examines the

impact of service meshes, such as Istio and

Linkerd, which inject sidecar proxies into

service pods to deliver capabilities like

observability, security, and traffic

management. While service meshes are

operationally advantageous, they are not

free from computational and networking

overhead. We quantify this overhead and

determine what this implies for

performance-sensitive applications under

varying load intensities. We further

investigate how network policies (e.g.,

applied through Calico or Cilium) affect

packet routing, filtering, and end-to-end

latency, with an emphasis on high-traffic

workloads.

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

434

I. INTRODUCTION

Kubernetes has fundamentally changed the

way modern software systems are

deployed, scaled, and run in production.

As the leading container orchestration

platform, Kubernetes enables

organizations to move to microservices

architectures that are fault-tolerant,

modular, and cloud-native. However, the

more distributed applications become, the

more important efficiency of inter-service

communication is as a performance

attribute. Within a Kubernetes cluster, the

communication between microservices is

based on the network layer only,

responsible for forwarding packets

between pods, services, and nodes. The

network model that is being deployed—

e.g., the underlying Container Network

Interface (CNI) base and the above service

mesh layer—can have a significant impact

on key performance metrics such as

latency, throughput, packet loss, and

utilization. Kubernetes features a

pluggable network model in the form of

CNI plugins, which define how

networking is performed at the pod level.

Popular CNI choices such as Calico,

Flannel, Cilium, and Weave Net offer

different trade-offs between scalability,

observability, security, and raw

performance. While Calico is concerned

with network policies and BGP routing,

Cilium leverages eBPF (extended Berkeley

Packet Filter) to enable deep kernel-level

control and visibility. Flannel is simple in

nature; therefore, it doesn't usually

comprise complex features. The

performance of all CNI largely depends on

the workload and topology of the cluster

and differs significantly when intra-node

communication is compared to inter-node

communication.

Adding to this complexity, the majority of

organizations employ service meshes such

as Istio or Linkerd to provide advanced

capabilities such as traffic routing,

telemetry, encryption, and failure recovery.

These capabilities are typically provided

through sidecar proxies, which are

embedded into application pods and

intercept traffic transparently. While

service meshes improve observability and

security, they also incur performance

overhead due to increased CPU usage,

memory consumption, and elevated

request handling latency. This work

attempts to exhaustively contrast how

different models of Kubernetes networking

influence the performance of microservice

communication. We compare some CNI

plugins, establish the overhead of service

mesh topology, and measure the impact of

network policies both through empirical

measurements and using metrics-based

comparisons. Through tools such as

435

Prometheus, Grafana, iperf, and k6, we

benchmark microservice traffic in various

cases—from high load, inter-node

communication, to request simulation in

real time. By observing how every model

of networking behaves under pressure, we

aim to provide actionable

recommendations for DevOps teams,

cloud architects, and system engineers.

This includes identifying optimal

configurations for latency-sensitive

applications, uncovering concealed

security policy expenses, and outlining

best practices in scalable and effective

microservice communication in

Kubernetes environments.

II. LITERATURE REVIEW

The evolution of cloud-native design has

placed Kubernetes at the center of a rich

platform for the orchestration of

containerized applications. The networking

subsystem in Kubernetes plays an

important role in delivering

interoperability among microservices but

also adds to complexity and possible

performance bottlenecking. Vast research

and technical studies have investigated

numerous topics related to Kubernetes

networking from performance of CNI

plugins to overhead of service mesh,

enforcement of network policies, and real-

time traffic optimization.

Several core books, including "Kubernetes

Networking: Under the Hood" by the

Cloud Native Computing Foundation

(CNCF), provide detailed accounts of

Kubernetes abstracting networking with

Container Network Interface (CNI)

plugins. This has paved the way for testbed

comparisons of CNIs like Calico, Flannel,

Cilium, and Weave Net each of which

balances different trade-offs in policy

control, performance, and ease of

configuration. For instance, research

published in IEEE and ACM conferences

discovered that Calico enjoys superior low

CPU overhead network policy

enforcement, while Cilium's eBPF-based

architecture enjoys superior packet

filtering performance as well as end-to-end

observability particularly in the presence

of high concurrency workloads.

On the matter of raw network latency and

throughput, studies such as "Performance

Comparison of Kubernetes CNI Plugins in

Production-like Environments" (IEEE

2023) and "Practical Benchmarking of

Kubernetes Networking Models" (ACM

2022) find that Flannel, although easy to

install, experiences higher latency and

packet loss when communicating between

nodes. In contrast, Weave Net has been

documented to enable mesh routing, albeit

at the cost of additional memory and CPU

utilization. Likewise, community-authored

436

benchmarking reports on GitHub provide a

profusion of real-world insight into CNI

behavior under high-pressure clusters.

An orthogonal body of research studies the

function and impact of service meshes—

namely Istio and Linkerd—introducing

sidecar proxies to intercept and route

traffic through a programmable control

plane. Multiple publications, like

"Understanding the Performance Impact of

Sidecars in Service Meshes" (USENIX

2022), have quantified the latency

overhead of sidecars as between 10% and

40%, depending on traffic patterns and

underlying protocols (HTTP/1.1, HTTP/2,

gRPC). Although these overheads are

usually justified for the advantages they

offer—like traffic encryption (mTLS),

circuit breaking, and telemetry—a number

of researchers advise against their

implementation in latency-sensitive or

resource-limited environments.

Another topic of concern in more recent

literature is the control of traffic flow by

Kubernetes Network Policies. Publications

like "Security and Performance Trade-offs

in Kubernetes Network Policy

Enforcement" (Springer 2021) point out

that policies enhance compliance and

isolation but introduce quantifiable latency

by way of complex rule examinations,

especially when combined with service

meshes. Moreover, inter-node versus intra-

node traffic has been investigated as an

important determinant of latency

consistency. Study shows that intra-node

communication is assisted by lower hops

and shared memory interfaces, whereas

inter-node communication is significantly

based on the physical NIC of the chosen

CNI plugin, DNS resolution latency, and

routing efficiency.

New work also investigates the feasibility

of dynamic network optimization, using

AI/ML algorithms or adaptive routing

protocols to reduce tail latency (p99) for

real-time applications such as video

streaming and high-frequency trading.

These concepts are in early stages but

show potential for future Kubernetes

development.

Lastly, several whitepapers from

technology vendors (e.g., Red Hat,

VMware, and Google Cloud) present real-

world experiences and field observations

about the operational behavior of

Kubernetes networking, e.g., the

integration of observability stacks like

Prometheus, Grafana, and Jaeger. Their

observations usually are in alignment with

academic research, reinforcing evidence-

based network stack decisions in

production.

III. METHODOLOGY

437

To evaluate the impact of Kubernetes

networking trends on the performance of

microservice communication, we adopt a

quantitative experimental methodology

that is aimed at repeatability, precision,

and applicability to production scenarios.

The methodology involves a series of

controlled experiments being conducted on

different Kubernetes cluster environments

using different networking settings and

workload configurations. Our primary

objective is to compare the performance

aspects of different Container Network

Interface (CNI) plugins i.e., Calico,

Flannel, Cilium, and Weave Net, and

quantify the overhead introduced by

service mesh architecture (Istio and

Linkerd), and network policies impact on

communication indicators like latency,

throughput, and packet loss.

The tests are conducted in three types of

Kubernetes environments: Minikube for

quick local testing, Kind (Kubernetes in

Docker) for container-separated testing,

and hosted Kubernetes services such as

Amazon EKS or Google GKE to test

performance within cloud-like production

environments. Each cluster has the same

hardware configurations, typically 2–3

nodes with similar CPU and memory

allocations, to limit variation and allow for

proper comparisons. There is one CNI

plugin installed per cluster instance to

ensure distinct analysis of all networking

models.

Production-like microservice workloads

are used in the simulation of production

communication patterns. They are the Istio

BookInfo application, SockShop, and a

collection of custom-built microservices

that include RESTful APIs that have been

constructed using Python (Flask) and

Node.js. They mimic regular inter-service

communications such as HTTP requests,

internal API calls, and asynchronous data

transfer. The tests run under three given

load levels: baseline (idle), moderate load,

and high throughput, using load generation

tools such as k6, wrk, and ApacheBench

(ab).

For gathering and visualizing network

metrics, we utilize Prometheus for

monitoring as a time-series and Grafana

for visualization based on dashboards.

Tools like iperf3 are used to gauge

TCP/UDP throughput, while tcpdump and

Wireshark are utilized for packet

inspection at the low level. The collected

metrics are round-trip time (RTT),

p50/p90/p99 latency, bytes per second,

requests per second, packet drop rate, and

CPU/memory utilization per pod. In

service mesh configurations use cases,

Istio and Linkerd are both utilized with

automatic sidecar injection enabled.

Sidecar proxies performance price is

438

benchmarked with and without service

mesh components in order to put a number

on it.

We also examine the impact of Kubernetes

network policies, particularly when

enforcing using Calico or Cilium, by

enabling restrictive policies (e.g., deny-by-

default) and quantifying the impact on

latency and throughput. To further

emphasize the difference between intra-

node and inter-node traffic, pods are

scheduled manually on the same or

different nodes and compared under the

same load and network configurations.

Figure 1: Kubernetes Networking Models

Workflow for benchmarking Kubernetes

networking performance using CNIs,

service mesh, and traffic scenarios.

There are several runs of every test case to

ensure statistical stability, and data is

exported from CLI tools and Prometheus

as structured data (JSON and CSV) for

analysis. Statistical measures such as

mean, standard deviation, and percentiles

(p50, p90, p99) are employed to aggregate

metrics, and comparative plots are made to

present performance deltas of CNIs, mesh

layers, and policy configurations. Specific

attention is provided to recognizing

overheads incurred by service mesh

sidecars and policy enforcement layers. his

method provides a stable and systematic

framework to contrast Kubernetes network

patterns in a variety of circumstances that

emulate ideal and production-like use

cases. The results are intended to guide

practitioners on the optimal network setup

to employ for latency-sensitive, high-

volume, or resource-constrained programs

in Kubernetes. Every test script, manifests,

and monitoring setting is version-

controlled to provide optimal

reproducibility and transparency of the

conducted experiments.

IV. BENEFITS OF KUBERNETES

NETWORKING MODELS

1. CNI Plugins (Calico, Flannel, Cilium,

Weave Net)

• Modularity & Flexibility: Kubernetes

supports a number of CNI plugins, and

customization is available according to

439

performance, security, and observability

needs.

• High Performance: Plugins like Cilium

(based on eBPF) and Calico (based on

native routing) support low latency and

high throughput communication.

• Support for Network Policies: Calico and

Cilium provide innovative network

security features through native policy

enforcement.

• Scalability: All CNIs are capable of

working with big clusters of thousands of

pods without any degradation in

performance.

• Cloud-Native Compatibility: CNIs are

cloud-provider (EKS, GKE, AKS)

compatible and integrate seamlessly with

service meshes.

2. Service Meshes (Istio, Linkerd)

• Amplified Observability: Offer inherent

metrics, traces, and logs without

modifying application code (via sidecar

proxies).

• Traffic Control: Enable intelligent

routing (e.g., canary releases, blue/green

deployments, A/B testing).

• Automatic mTLS: Facilitate end-to-end

encrypted communication between

services, enhancing cluster security.

• Reliability Features: Introduce circuit

breakers, retries, timeouts, and rate

limiting to make microservices fault-

tolerant.

• Decoupling Logic from Application

Code: Moves networking and security

logic out of the application layer to

infrastructure.

3. Network Policies (Calico, Cilium)

• Security & Isolation: Establishs least-

privilege access between pods and

prohibits unauthorized communication.

• Compliance Enforcement: Meet

organizational and regulatory security

compliance with rules-based

communication.

• Granular Traffic Control: Create policies

based on namespaces, labels, and IP blocks

in order to manage pod-to-pod and pod-to-

outside traffic.

• Native Kubernetes Integration: Policies

are a part of the Kubernetes API and are

declaratively managed along with other

resources.

V. DRAWBACKS OF

KUBERNETES NETWORKING

MODELS

1. CNI Plugins

• Unreliable Performance: Plugins like

Flannel and Weave may have high latency

440

and packet loss during heavy loads or

when nodes talk.

• Setup Complexity: Advanced CNIs (e.g.,

Cilium) require kernel support (eBPF) and

additional setup, which increases

installation complexity.

• Poor Observability: Simpler CNIs like

Flannel have very limited built-in

monitoring, making performance

debugging difficult.

• Resource Overhead: CNIs like Weave

Net add additional CPU and memory to

maintain mesh peer connections.

2. Service Meshes

• Latency Overhead: Sidecar proxies like

Envoy introduce additional network hops,

resulting in 10–30% request/response

latency.

• Steep Resource Utilization: Every sidecar

container takes up extra memory and CPU,

doubling per-pod resource usage in some

cases.

• Steep Learning Curve: Products like Istio

are operationally complex with multi-

component control planes that require deep

expertise to manage.

• Debugging Overcomplication: Traffic

goes through multiple layers (app → proxy

→ proxy → app), which could complicate

failure diagnosis.

• Not Always Required: Low-latency or

lightweight applications might not gain

sufficient benefits from service mesh

functionality to outweigh the performance

penalty.

3. Network Policies

• Impact on Performance: Processing large

or intricate rule sets can cause delays,

particularly when added to a service mesh.

• Operational Risk: Incorrectly configured

policies can accidentally deny valid traffic,

leading to downtime or connectivity

problems.

• Limited Visibility: Kubernetes does not

have inherent visibility into the policies in

place and their effect on traffic.

• Increased Management Overhead: As

policy and service counts grow,

maintaining rule sets current becomes

difficult without automated or visualized

aid.

VI. RESULTS

1. CNI Plugin Performance

We evaluated Calico, Flannel, Cilium, and

Weave in both intra-node and inter-node

scenarios using microservice workloads

deployed in Minikube, Kind, and managed

Kubernetes clusters (EKS/GKE). The

following metrics were recorded:

441

CNI p50 (ms) p90 (ms) p99 (ms)

Calico 1.8 3.2 5.7

Cilium 2.0 3.4 6.0

Flannel 2.9 5.6 9.2

Weave 2.5 4.8 8.3

Table 1:Latency (p50 / p90 / p99) - Inter-

node Communication

CNI Intra-node Inter-node

Calico 930 870

Cilium 920 860

Flannel 750 670

Weave 780 690

Table 2: Throughput (Mbps)

CNI High Load Normal Load

Calico 0.2 0.0

Cilium 0.3 0.0

Flannel 1.1 0.2

Weave 0.9 0.1

Table 3: Packet Loss (%)

Key Takeaway: Calico demonstrated the

best balance of latency and throughput

under both normal and high traffic. Flannel

consistently underperformed, particularly

in inter-node setups under high load.

2. Service Mesh Overhead

We tested Istio and Linkerd with and

without sidecar injection on workloads

such as BookInfo and SockShop.

Mesh p50 (%) p90 (%) p99 (%)

Istio +12% +24% +30%

Linkerd +9% +18% +26%

Table 4: Latency Overhead (relative to no

mesh)

Configuration
CPU

(%)

Memory

(MB)

No mesh 100 180

Istio (w/ sidecar) 165 420

Linkerd (w/

sidecar)
150 350

Table 5: CPU and Memory Utilization per

Pod

Key Takeaway: Both service meshes

introduced notable latency and resource

overhead, with Istio being heavier than

Linkerd. However, they also enabled

advanced traffic management, TLS, and

observability features.

3. Network Policies (Calico vs. Cilium)

442

We assessed performance impact with and

without network policies (e.g., deny-all +

allow-specific).

CNI Overhead (%)

Calico +2.5%

Cilium +3.1%

Table 6: Latency Impact with Policies

Enabled

Policy Enforcement Accuracy

 Both CNIs enforced policies

reliably.

 Cilium allowed more expressive

policy rules due to its eBPF-based

architecture.

Key Takeaway: Calico and Cilium

introduced minimal latency when

enforcing policies, making them suitable

for secure multi-tenant workloads.

4. Cross-Environment Consistency

Performance varied slightly across

platforms:

Metric
Miniku

be
Kind EKS GKE

Avg

Throughp

ut

±5% ±8% — —

Metric
Miniku

be
Kind EKS GKE

Avg

Latency
±7%

±10

%
— —

Service

Mesh

CPU

Higher
High

er

Modera

te

Modera

te

Table 7: Performance varied slightly

across platforms

Key Takeaway: Kind and Minikube

exhibited higher variability and resource

contention, especially under service mesh

configurations. Managed services (EKS,

GKE) provided more stable performance.

VII. SUMMARY OF

OBSERVATIONS

Scenario
Recommended

Option

Low-latency, high-

throughput apps

Calico without

service mesh

High observability,

secure traffic

Cilium with

Linkerd

Simplicity in test/dev

environments
Flannel or Weave

Policy-driven

isolation
Calico or Cilium

Resource-constrained Avoid full Istio

443

Scenario
Recommended

Option

nodes mesh

VIII. CONCLUSION

Within this study, we conducted an

exhaustive examination of Kubernetes

networking performance, focusing on the

influence of multiple CNI plugins and

service mesh instances on microservice

communication. Through our study, we

bring to the fore the significant role played

by the networking layer in establishing the

performance, scalability, and operational

characteristics of cloud-native

applications.

Among the tested CNIs, Calico was a

consistent all-around performer with good

low-latency communication and effective

policy enforcement without high overhead.

Cilium, while even more resource-

intensive, was extremely scalable and

observable because of its eBPF-based

design. Flannel and Weave, while easier to

deploy, were extremely constrained in

high-load and inter-node communications

scenarios and are therefore less suitable for

production environments.

Service meshes such as Istio and Linkerd

introduced additional latency and resource

consumption with their sidecar-based

architecture. That being said, they provide

significant benefits in terms of

observability, traffic management, and

security—advantages that may be worth

their overhead in systems operating within

enterprises. Of interest is that Linkerd

tended to have a smaller footprint than

Istio while still providing key features.

Our enforcement of network policies

analysis showed that both Cilium and

Calico handle complex security rules

excellently with minimal latency impact,

making them suitable for multitenant or

compliant workloads.

On environments (Minikule, Kind, EKS,

GKE), we observed performance behavior

to be mostly consistent, but local

environments were more inconsistent

when loaded. This emphasizes the

importance of testing network stacks under

workloads that best simulate production.

IX. RECOMMENDATIONS

• For latency-critical use cases (e.g., real-

time analytics, VoIP, trading apps),

lightweight CNIs like Calico without a

service mesh are desired.

• For security- and observability-oriented

workloads, Cilium with Linkerd provides a

444

suitable balance between performance and

operational efficiency.

• For development or CI environments,

lighter solutions like Flannel can suffice

but are not optimal for distributed or high-

throughput deployments.

• Full-service meshes like Istio must be

deployed carefully and/or selectively in

clusters with scarce resources, or if

supported, in the ambient/sidecarless

configurations.

X. FINAL THOUGHTS

With Kubernetes becoming the foundation

for systems developed on microservices, it

is essential to understand the performance,

security, and manageability trade-offs

involved in design choices in the network.

This paper provides a real-world decision-

making process for Kubernetes developers

to design their networking setup for

application-specific needs. The analysis

can be extended in future work towards

future technologies such as sidecarless

service mesh architectures, eBPF-based

firewalls, and zero-trust models for the

network.

REFERENCE

[1] Gokhale, P. et al. (2021). A

comprehensive performance

evaluation of different Kubernetes

CNI plugins including Flannel,

Weave Net, and Kube-Router. In

IC2E 2021 Conference.

Reddit+10overcast

blog+10plural.sh+10Medium+4dre

.vanderbilt.edu+4ACM Digital

Library+4

[2] Miziński, K., & Przyłucki, S.

(2025). The impact of using eBPF

technology on the performance of

networking solutions in a

Kubernetes cluster. Journal of

Computer Science, 35, 150–158.

ResearchGate

[3] Lentz, M. et al. (2023). Dissecting

overheads of service mesh sidecars.

In Proceedings of SOCC

(MeshInsight project).

users.cs.duke.edu

[4] Deepness Lab. (2024).

Performance comparison of service

mesh frameworks: the mTLS

overhead in Istio, Linkerd, Cilium.

(ArXiv 2411.02267). overcast

blog+15arXiv+15arXiv+15

[5] Kinvolk. (2019). Performance

benchmark analysis of Istio and

Linkerd. Kinvolk blog.

Linkerd+2kinvolk.io+2kinvolk.io+

2

[6] Linkerd.io. (2021). Benchmarking

Linkerd and Istio: Linkerd

dramatically faster and more

445

efficient. Linkerd blog.

Linkerd+1Linkerd+1

[7] Cilium Project. (2021). CNI

performance benchmark:

Understanding Cilium network

performance. Official

documentation. DEV

Community+15docs.cilium.io+15ci

lium.io+15

[8] Overcast (skyDragon), D. W.

(2024). 11 ways to optimize

network performance in

Kubernetes. Overcast.blog.

overcast blog+1DEV

Community+1

[9] Platform9. (2025). Kubernetes

CNI: The ultimate guide for Calico,

Cilium, and Flannel. Plural.sh blog.

static.linaro.org+3plural.sh+3Platfo

rm9+3

[10] Tigera. (2025). High-performance

Kubernetes networking with Calico

eBPF. Tigera blog.

kinvolk.io+9tigera.io+9tigera.io+9

[11] Tigera. (2020). Calico delivers

“wow effect” with 6× faster

encryption. Tigera blog. tigera.io

[12] Sanj.dev. (2025). Cilium vs Calico

vs Flannel: CNI performance

comparison. sanj.dev. Reddit+2My

blog+2Civo.com+2

[13] it-next.io. (2024). Benchmark

results of Kubernetes network

plugins over 40 Gbit/s network:

Cilium stands out. ITNEXT blog.

arXiv+15ItNext+15Reddit+15

[14] Linaro. (2020). Performance

benchmarking and tuning for

container networking (Calico,

Cilium, Flannel). Linaro

presentation.

Medium+5static.linaro.org+5plural

.sh+5

[15] Vanderbilt University and

Gokhale’s group. (2021). CNI

evaluation for hybrid Kubernetes

clusters running DDS applications.

IC2E paper. dre.vanderbilt.edu

[16] Preprints.org. (2024). Performance

and latency efficiency evaluation of

Kubernetes CNI—including

HPC/AI scenarios. Preprints.

Preprints+1MDPI+1

[17] ACM / Karrenberg et al. (2020?).

The Performance Analysis of

Container Networking Interface

(Flannel, Calico, Cilium, Antrea).

ACM proceedings.

Preprints+3ACM Digital

Library+3ItNext+3

[18] arXiv. (2024). Performance

evaluation of Kubernetes

networking approaches: Flannel,

446

OVS, VLAN vs native. ArXiv

2401.07674. arXiv

[19] Cilium.io. (2018). Analyzing the

CNI performance benchmark.

Cilium blog. cilium.io

[20] Reddit (Calico vs Cilium thread).

(2024). Cilium and Calico both use

BPF with O(1) performance vs

iptables O(N). Reddit commentary.

Reddit

[21] Reddit (benchmark results over

10Gbit). (2023). Personal

preference for Calico due to

familiar Linux networking stack.

Reddit commentary.

Reddit+1Reddit+1

[22] Reddit (service mesh impact

thread). (2021). Typical

performance hit when adding

service mesh proxies and mTLS.

Reddit discussion.

open.bu.edu+4Reddit+4arXiv+4

[23] Addo Zhang, A. (2023). Learning

Kubernetes VXLAN networking

with Flannel. Medium blog.

Medium

[24] ByteBlog. (2024). Mastering

Kubernetes networking with

Weave. Byte Blog. DEV

Community+3Medium+3Medium+

3

[25] Kubernetes.dev (Weave Net

metrics doc). (2023). Weave Net

network policy controller exposes

endpoints for metrics. Kubernetes

docs. DEV

Community+3GitHub+3kubernetes

.io+3

[26] GitHub WeaveWorks. (2017).

Weave Net benchmarks & fast

datapath results. GitHub repository.

tigera.io+3GitHub+3stackoverflow.

com+3

[27] StackOverflow. (2017).

Performance issues with Weave

networking on Kubernetes cluster.

StackOverflow Q&A.

stackoverflow.com

[28] Wallarm (Cloud-Native Products

101). (2023). Cilium vs. Calico:

advanced network security

comparison. Wallarm blog.

tigera.io+15wallarm.com+15tigera.

io+15

[29] Dev.to (mechcloud academy).

(2025). Cilium vs Calico:

Comparing Kubernetes networking

solutions. Dev.to article. DEV

Community

[30] Dev.to (Abhay). (2024).

Kubernetes networking strategies:

Flannel, Calico, Weave Net

447

comparison. Dev.to article. DEV

Community

[31] Istio.io. (2025). Istio performance

and scalability in large mesh (1000

services / 70 000 RPS). Istio docs.

istio.io+1arXiv+1

[32] Solo.io. (2021). Operational

overhead of Istio’s external control

plane architecture. Solo.io blog.

kinvolk.io+7solo.io+7open.bu.edu

+7

[33] PKLinker, P. (2020). Performance

impacts of an Istio service mesh.

Medium blog.

Reddit+3Medium+3Reddit+3

[34] Kinvolk. (2020). Egress filtering

benchmark: Calico vs Cilium.

Kinvolk blog. kinvolk.io

