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Abstract- The use of robots in human-

centered spaces calls for motion planning 

methods that go beyond mere collision 

avoidance to provide both safety and 

operational effectiveness. Existing 

methods tend to use strict, over-sized 

safety zones, which disrupt the fluidity of 

human-robot collaboration. This paper 

presents "Probabilistic Predictive Safety 

Zones," a new framework for real-time, 

human-aware motion planning in the face 

of uncertainty. We introduce a 

Transformer-based deep learning model to 

generate a probabilistic prediction of 

human motion, as a Gaussian Mixture 

Model (GMM), from real-time 3D skeletal 

data. This probabilistic map is then 

combined with a risk-aware RRT* motion 

planner that plans robot trajectories to 

minimize the risk of collisions while 

maximizing task efficiency. Our approach 

was tested in simulation and with a 7-DOF 

robotic arm executing a collaborative 

assembly task. Results exhibit 

considerable reductions in task execution 

time and operational smoothness compared 

to conventional baseline techniques, like 

fixed safety zones. In addition, qualitative 

user studies validate an increased level of 

perceived comfort and safety from human 

partners. By allowing robots to detect and 

cleverly respond to the presence of 

humans, this research is a major advance 

towards the development of truly 

synergistic and effective human-robot 

collaboration in unstructured, complex 

settings. 

Keywords: Probabilistic motion planning, 

human-aware robotics, safety zones, real-

time path planning, uncertainty modelling. 

I. INTRODUCTION 

The fourth industrial revolution, also 

referred to as Industry 4.0, is 

fundamentally transforming contemporary 

manufacturing and logistics. At the core of 

International Journal of Recent Research and Review, Special Issues-2 - 2025 
ISSN 2277 – 8322 



32 

 

this revolution is the emergence of 

Collaborative Robotics (Cobotics), in 

which human labor and robotic systems 

collaborate in a shared workspace to 

establish a synergy greater than the sum of 

either working independently. The 

paradigm utilizes human creativity, 

flexibility, and problem-solving 

capabilities combined with the robot's 

accuracy, power, and stamina. As 

businesses in fast-growing economic 

corridors, like those in Rajasthan and 

elsewhere in India, go on to automate, 

seamless integration of cobots emerges as 

a key driver for productivity gains and 

competitiveness. Yet, the potential for this 

collaborative framework can be realized 

only by addressing the most overriding 

issue in the industry: guaranteeing absolute 

human safety while not forgoing the 

efficiency and smoothness that makes 

collaboration valuable. Existing safety 

standards are usually reactive and 

excessively cautious. They are based on 

hard zones or minimal distance-based 

policies that make a robot sharply 

decelerate or come to a halt, interfering 

with the process and considering the 

human an obstacle. This paper asserts that 

there should be a paradigm change toward 

proactive, smart safety. We propose 

"Probabilistic Predictive Safety Zones 

(PPSZ)," a new approach that allows a 

robot to predict human behavior. By 

predicting a probability distribution of an 

individual's future motions with a 

Transformer-based deep learning model, 

our system enables the robot to make more 

intelligent, less intrusive choices. It steers 

clear of the forecasted high-probability 

regions, achieving smooth, efficient 

motion while ensuring safety. This paper 

lays out this predictive model's design, 

how it is combined with a risk-aware 

motion planner, and experimental proof of 

its dominance over customary approaches 

and the path toward highly synergistic 

human-robot collaboration. 

II. LITERATURE REVIEW 

The quest for unintermitting human-robot 

cooperation has developed in stages of 

research, transitioning from a rigid 

separation paradigm to one of synergistic 

intelligent interaction. The change has 

been fueled by advances in safety 

standards, predictive simulation, and 

uncertainty motion planning. Originally, 

the basis of Robot Safety in the factory 

environment was constructed upon an 

ethical doctrine of strict segregation, 

employing physical enclosures such as 

cages and fences to eliminate any risk of 

contact. As collaboration increased, this 

became reactive safety systems based on 

standards such as ISO/TS 15066 [1]. These 

systems, especially through Speed and 

Separation Monitoring (SSM), allow for a 
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shared workspace but treat the human as 

an unpredictable entity. The robot's actions 

directly, reactively function by acting 

according to its distance from the human, 

resulting in conservative behaviors and 

inefficient, stop-and-go interactions that 

are interruptive to the collaborative 

workflow [2]. Whereas these protocols 

created an essential foundation for safety, 

their intrinsic weakness is that they are not 

foresighted; they respond to the current, 

not predict the future. Embracing this 

weakness, a major body of research 

transitioned its attention to Human Motion 

Prediction, seeking to give robots the 

foresight they were missing. Early research 

employed traditional approaches such as 

Kalman Filters for basic trajectory 

prediction [3], but these were soon 

replaced by the power of deep learning. 

Recurrent Neural Networks (RNNs) and 

their variants, including LSTMs and 

GRUs, became the ruling architectures for 

learning nuanced, non-linear patterns of 

human movement from skeletal time-series 

data [4, 5]. Through 2025, the state-of-the-

art has evolved further with the use of 

Transformer Networks. With their strong 

attention mechanisms, Transformers have 

exhibited a better capacity for modeling 

long-distance dependencies and contextual 

signals in human movement [6]. But there 

is one key gap: most of these strong 

models are deterministic, only predicting 

the one most probable future trajectory. 

This does not handle the essentially multi-

modal nature of human intent—a person 

might grab one of several tools—which is 

vital for strong safety planning. 

III. METHODOLOGY 

-The newly suggested Probabilistic 

Predictive Safety Zones (PPSZ) system is 

conceptualized as a real-time, modular 

pipeline that transforms raw sensory 

information into safe and efficient robot 

movement. The framework consists of 

three core components: (1) a real-time 

human pose estimation perception module; 

(2) a probabilistic prediction module that 

predicts future human movement; and (3) a 

risk-aware motion planning module that 

computes robot trajectories. The overall 

framework structure is shown in Figure 1. 

Human Perception Module 

The basis of our system is the precise and 

online understanding of the human partner. 

To obtain this, we deploy a commercial 

off-the-shelf RGB-D camera (Intel 

RealSense D435i) to record synchronously 

both color and depth streams of the 

workspace to be shared. 

From this raw sensor data, we pull out the 

human's three-dimensional skeletal model 

using Google's MediaPipe Pose library. 

MediaPipe offers a strong and 

computationally efficient solution, 
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detecting 33 distinctive body landmarks 

(e.g., shoulders, elbows, wrists, hips) and 

delivering their 3D coordinates (x,y,z) in 

the camera's reference system. A vector 

H_tinmathbbR33times3, encompassing the 

3D coordinates of all landmarks, 

represents the state of the human at any 

time t. This process executes in real-time, 

creating a steady flow of skeletal 

information that is input for our prediction 

model. 

Probabilistic Human Motion Prediction 

Model 

The core novelty of our framework lies in 

its ability to forecast a probabilistic 

distribution of future human movements 

rather than a single deterministic 

trajectory. We achieve this using a 

sequence-to-sequence Transformer-based 

architecture. 

Model Input and Output 

The model accepts as input a sequence of 

observed human poses over a specified 

historical time window, T_obs. The input 

sequence is represented as 

S_obs=(H_t−T_obs+1,.,H_t). The task of 

the model is to forecast a probabilistic 

distribution for the human pose at future 

timesteps up to a prediction horizon, 

T_pred. The output is a sequence of 

Gaussian Mixture Models (GMMs), 

G=(G_t+1,.,G_t+T_pred), where each G_t′ 

is the probability distribution of the 

human's major landmarks at that future 

time. 

Model Architecture 

Our model takes an encoder-decoder 

architecture, as is typical for Transformer 

networks. 

•Encoder: The function of the encoder is to 

transform the observed motion sequence 

S_obs into a latent context vector full of 

temporal information. Each pose H_t in 

the sequence is initially fed through a 

linear embedding layer. Positional 

encodings are appended to these 

embeddings so that the model is informed 

about the sequence order. The resultant 

sequence of vectors is then fed through a 

stack of self-attention layers so that the 

model can weigh the relevance of various 

poses in the history when building its 

comprehension of the motion. 

•Decoder: The decoder autoregressively 

produces the future prediction using the 

latent context vector from the encoder. At 

every prediction time t′, the decoder 

generates the parameters of a GMM 

representing the probability distribution 

over the locations of a set of key human 

landmarks (e.g., hands, torso, head). For a 

mixture of K Gaussians, it generates the 

mean mu_k, standard deviation sigma_k, 

and mixture weight pi_k for every 
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component kin1,.,K. The probability 

density at a location x is therefore given 

by: 

\P(x)=k=1∑KπkN(x∣μk,σk) 

This multi-modal output is important for 

catching the natural uncertainty in human 

behavior, like whether someone will move 

left or right. 

Risk-Aware Motion Planner 

  The last phase of our pipeline is to use 

the probabilistic prediction to produce safe 

and optimal robot paths. We adapt the 

widely used RRT* algorithm, a sampling-

based planner that has the benefit of 

computational efficiency and 

asymptotically optimal path finding. 

Our innovation is in the cost function 

definition used to expand the RRT* tree. 

The cost of an arbitrary trajectory, tau, is 

not its path length but a weighted sum of 

the path cost and the risk of collision 

integrated along the path. The overall cost 

is defined as: 

Cost(τ)=Cpath(τ)+λ⋅Crisk(τ) 

where: 

•C_path(tau) is the usual cost related to the 

length or execution time of the trajectory. 

•\lambda is a user-specified risk-aversion 

parameter that adjusts the robot's caution 

level. 

•\tC_risk(tau) is the path-integrated 

collision probability, which is calculated 

as: 

Crisk(τ)=∫t∈τPcollision(r(t),t)dt 

Here, r(t) denotes the location of a point on 

the robot body at time t, and 

P_collision(r(t),t) is the probability density 

at such a point, computed from the GMM 

prediction produced by our prediction 

model for that particular time. 

IV. ADVANTAGES AND 

DISADVANTAGES 

Advantages 

• Improved Efficiency and Smoothness: 

The greatest benefit is the transition from 

reactive stopping to proactive evasion. 

Rather than stopping or slowing down 

significantly whenever a human crosses 

into a designated area, the robot can 

recognize the human's path and smoothly 

change course around the anticipated zone 

of high likelihood. This translates to fewer 

disruptions, reduced task times, and 

smoother, more natural flow, which is 

essential for industrial productivity. 

•Proactive and Better Safety: With an 

ability to predict where people will be 

going, the system has the capability to 

detect and counteract potential dangers 

before they reach a critical point. A 

reactive system could crash if someone 
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rushes too fast into the robot's trajectory, 

but through our predictive method, the 

robot can proactively choose a more secure 

path. It considers where people are going 

to be, not where they are right now, and 

this gives us better safety when dealing 

with moving objects. 

•Uncertainty Robustness: Utilizing a 

Gaussian Mixture Model (GMM) to model 

the future is one of the strengths. Human 

movement is naturally multi-modal (e.g., 

an individual may pick up one of many 

available tools). A deterministic predictor 

would be reduced to having to guess one 

trajectory, which could result in error. Our 

probabilistic approach handles this 

uncertainty by modeling several potential 

futures, each assigned a probability. The 

motion planner can then compute an 

optimal path that is safe in all probable 

outcomes, and the system becomes more 

robust and reliable in the real world. 

•Generalizability of Learned Models: The 

system uses a data-driven Transformer 

model, which is trained to learn 

generalized patterns of human movement 

as opposed to being hand-coded for a 

particular task. Having learned on a varied 

dataset, the model can generalize to new 

users and small task variations without 

reprogramming. It learns the underlying 

"language" of human movement, which 

makes the system more flexible and 

scalable than older, hand-engineered 

methods. 

Disadvantages 

•Computational Complexity: The system 

suggested is computationally heavy. The 

execution of a large Transformer network 

for prediction and a sampling-based 

planner constantly assessing a probabilistic 

cost function takes considerable processing 

power, most likely requiring a specialized 

GPU in the robot's control system. This 

may drive up the total cost, power 

consumption, and hardware needs over 

traditional reactive systems. 

• Data Dependency and "Out-of-

Distribution" Failures: Given that it is a 

deep learning-based system, its 

performance is inherently linked to the 

diversity and quality of its training data. 

The model can fail to predict accurately if 

it does not see a kind of motion previously 

(e.g., someone stumbling, fumbling with 

an object, or performing a very 

unpredictable gesture). This "out-of-

distribution" issue is a particular difficulty, 

since it would be impossible to train on all 

possible human actions, and error in these 

boundary cases could undermine safety. 

•Interpretability and the "Black Box" 

Problem: Although Transformers are 

highly capable, they tend to be "black 

boxes." It can be very hard to comprehend 
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why the model predicted something in a 

specific manner. For a safety-critical 

system, the absence of interpretability is a 

significant limitation. If the robot does 

something unexpected, it is not 

straightforward to diagnose the root cause 

in the neural network, which represents a 

major obstacle for formal verification and 

safety certification procedures. 

•Tuning and Parameterization Complexity: 

The architecture has a number of important 

hyperparameters that need to be tuned 

nicely in order to perform at its best. This 

consists of the risk-aversion parameter (λ) 

in the cost function, the number of 

components (K) for the GMM, the length 

of the prediction horizon, and many 

training parameters for the deep learning 

network. It is often an empirical, time-

consuming process to find the proper 

balance between efficiency and safety, and 

incorrectly selected parameters would 

result in behavior that is either too timid or 

not nearly safe enough. 

V. RESULT 

To test our Probabilistic Predictive Safety 

Zones (PPSZ) framework, we performed 

experiments with a 7-DOF robot arm in a 

shared assembly task, comparing its 

performance with that of a Reactive 

Planner and an Industry Standard-

compliant Fixed Safety Zone method. The 

quantitative study showed considerable 

gains in performance. Our PPSZ approach 

had an average task completion time of 

only 36.3 seconds, 42% better than the 

Fixed Safety Zone (62.5s) and 26% better 

than the Reactive Planner (48.9s). This 

performance improvement is straight away 

attributed to a significant decrease in robot 

stoppages, with our approach averaging 

only 0.4 interruptions per trial against 5.8 

for the fixed-zone method. Therefore, our 

system had a greater average speed of 

operation, with better path efficiency and 

smoothness. These quantitative measures 

were also reflected in qualitative user 

study feedback. The PPSZ method 

received the greatest human comfort rating 

(8.7/10) and was termed as being 

'intelligent' and 'natural' by participants. 

They felt the robot to be an anticipating 

collaborator, as opposed to the 'jerky' and 

'frustrating' behavior they reported with the 

baseline approaches. Finally, the 

experimental results confirm strongly that 

our predictive, probabilistic strategy 

overcomes successfully the safety-

efficiency trade-off, allowing for a truly 

synergistic human-robot collaboration. 

VI. CONCLUSION 

This paper introduces the Probabilistic 

Predictive Safety Zones (PPSZ) system to 

enable safe, efficient, and natural human-

robot collaboration by predicting human 
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actions rather than reacting to them. Using 

a Transformer-based deep learning model 

for human motion prediction combined 

with a risk-aware motion planner, PPSZ 

significantly reduces task times and 

unnecessary robot stoppages compared to 

conventional reactive safety methods, 

without compromising safety. User studies 

confirmed improved comfort and natural 

interaction. While challenges such as high 

computational requirements, dependency 

on diverse training data, and limited 

interpretability remain, future work will 

focus on model optimization for embedded 

systems, self-supervised learning, and 

explainable AI to enhance trust and 

scalability, particularly for applications in 

advanced manufacturing and Industry 4.0 

environments. 
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