
402

COGNITIVE AGENTS IN DEVOPS: TRANSFORMING

OBSERVABILITY, INCIDENT RESPONSE, AND POLICY-

AWARE AUTOMATION

Vimal Daga

CTO, LW India |

Founder, #13 Informatics

Pvt Ltd

LINUX WORLD PVT.

LTD.

Preeti Daga

CSO, LW India |

Founder, LWJazbaa Pvt

Ltd

LINUX WORLD PVT.

LTD.

Satvik Dubey

Research Scholar

LINUX WORLD PVT.

LTD.

Abstract- This work introduces the Cognitive

DevOps Assistant (CDA)—an intelligent AI

system designed to help SRE and DevSecOps

teams manage the growing complexity of

modern infrastructure. Powered by advanced

frameworks like ReAct and AutoGen, the CDA

doesn’t just detect problems—it understands

them. It analyzes logs, metrics, traces, and

changes across systems, recalls past incidents,

reasons through what’s happening, and takes

safe, policy-compliant actions like rollbacks or

scaling, with human oversight built in. It’s more

than automation—it’s intelligent collaboration.

Drawing on insights from over 30 recent studies,

the CDA shows clear benefits: faster incident

resolution, less noise, and reduced workload for

engineers. It even uses causal AI to go beyond

surface-level symptoms and get to the real root

of a problem. This all happens within a broader

shift toward Cognitive Agents in AIOps—AI that

can think, learn, and act in real time to keep

systems healthy and secure. These agents thrive

on observability—rich data from logs, metrics,

and traces—that gives them the context they

need to make smart decisions. In parallel,

DevSecOps practices ensure that every step—

from code to production—remains secure and

compliant. Cognitive agents can support this by

automatically catching vulnerabilities and

enforcing security rules. Together, this blend of

AI, observability, and DevSecOps creates a

powerful ecosystem where systems not only stay

reliable but get smarter over time. The result?

More uptime, less stress for engineers, and a

future where AI is a trusted partner in keeping

everything running smoothly.

Keywords: Cognitive agent, AIOps,

Observability, Site Reliability Engineering,

Agentic AI, DevSecOps

I. INTRODUCTION

Modern Site Reliability Engineering

(SRE) teams are grappling with

unprecedented complexity. Today's

systems are composed of thousands of

microservices, deployed continuously

across distributed, hybrid cloud

environments. Engineers must maintain

service reliability while navigating real-

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

403

time telemetry, dynamic system states, and

ever-evolving deployment pipelines. As a

result, incidents are no longer isolated

events—they're often emergent

phenomena that span infrastructure,

application layers, and third-party

dependencies. In such an environment,

incident response must be faster, more

intelligent, and more adaptable than ever

before. Yet, SREs often find themselves

buried under noisy alerts, disconnected

tooling, and a flood of observability data—

from logs and metrics to traces, change

diffs, and compliance events. Extracting

actionable insight from this heterogeneous

data in real time is no longer a task suited

to human cognition alone. Even

experienced engineers can miss weak

signals, misinterpret correlated symptoms,

or delay remediation due to mental fatigue

or information overload. While AIOps has

helped automate some routine

operations—such as anomaly detection or

alert suppression—it largely relies on

heuristic or pattern-based models. These

systems lack the ability to reason about

context, recall past events meaningfully, or

take nuanced action in unfamiliar or

evolving scenarios. In short, they are not

“cognitive.” This is where Cognitive

Agentic AI—powered by recent advances

in Large Language Models (LLMs) and

tool-using agents (e.g., ReAct,

AutoGen)—can offer transformative

potential. These agentic frameworks

enable an LLM not just to process text or

telemetry, but to think through a situation,

act upon it using system APIs or

observability tools, and remember past

decisions and their outcomes. With

properly designed memory, reflection, and

policy constraints, such agents can

participate in high-stakes operational

workflows—diagnosing issues, proposing

remediations, querying services, or

initiating safe actions—while staying

accountable, interpretable, and under

human supervision. This paper introduces

the Cognitive DevOps Assistant (CDA): a

system that embodies these principles to

assist modern SRE teams in real-world

cognitive scenarios. The CDA is designed

to analyze telemetry data, detect

anomalies, reason about system state,

interact with tooling, enforce DevSecOps

policies, and coordinate with human

operators when ambiguity or risk demands

caution. Far from replacing engineers, the

CDA serves as a trusted copilot—

automating toil, accelerating incident

response, and preserving human attention

for judgment, creativity, and strategic

reliability improvements. We evaluate the

CDA across multiple axes—efficiency,

safety, trust, and integration effort—and

show how such systems can reshape the

way reliability engineering is practiced.

Our findings suggest that when cognitive

404

agents are grounded in observability,

policies, and human-in-the-loop design,

they can not only boost operational

performance but also foster trust,

transparency, and long-term learning

across complex DevOps environments.

II. LITERATURE REVIEW

1. AIOps and Machine Learning for

Observability

The application of AIOps in modern

observability tools has come a long way in

the recent past, primarily through applying

machine learning (ML) techniques to make

operational processes more effective and

accurate. Traditional observability tools

such as Prometheus, ELK stack, Datadog,

and New Relic generate massive amounts

of telemetry, and it is not possible for

humans to filter, correlate, and diagnose

all potential signals in real time. Initial

AIOps solutions employed heuristic

filtering and supervised learning

techniques—such as clustering for noise

filtering, decision trees for classifying

alerts, and linear models for anomaly

detection. Useful with structured data and

cyclic failure patterns, these techniques

fail to generalize to new or surprise

instances since they lack understanding of

context and are rigidly reliant on training.

Recent advances in transformer models

and few-shot learning with Large

Language Models (LLMs) have made new

opportunities available for managing

unstructured observability data such as

natural language incident reports, config

diffs, and support tickets. For instance,

transformer models now contextualize

multi-modal inputs (for instance, logs +

traces + deployment records) and produce

human-readable explanations or root-cause

hypotheses. Exciting as they are, such

models are presently ungrounded in

memory, non-deterministic in control, and

lacking safety constraints necessary for

robust deployment in production

environments.

Cognitive Architectures and Agentic AI

Frameworks

To surpass shallow automation, researchers have

developed cognitive agent models that can

implement reasoning, memory, and tool

interaction in real-world settings. Architectures

such as ReAct (Reasoning + Acting) and

AutoGen equip LLM-based agents with the

ability to switch between natural language

thought patterns and API calls and command-line

actions, thus enabling multi-step decision-

making and recursive problem-solving.

Frameworks such as LangChain and LangGraph

offer systematic abstractions for modular

choreography of tools, multi-agent

communication, and stateful memory. These

frameworks allow agents to chain across multiple

405

tools (e.g., querying a metrics database, checking

against a compliance API, calling a rollback),

pass context across multiple interaction steps,

and produce explainable, step-by-step reasoning

traces. It is crucial in remediation based on

observability where historical context, prior

actions, and tool results are utilized to decide on

future decision branches. Furthermore, these

frameworks are more and more bringing

multimodal interfaces (e.g., dashboards, time-

series views, charts) and supporting agents that

can reason over parallel structured + unstructured

data, a feature of high utility for SRE workflows

dealing with heterogeneous data modalities.

Policy-Based DevSecOps Automation

DevSecOps now integrates security and

compliance policies across every phase of the

software lifecycle, from build-time to runtime.

Policy-as-code engines such as Open Policy

Agent (OPA), SPIFFE/SPIRE, Kyverno, and

KevOps allow organizations to formalize and

enforce authentication, network access,

configuration compliance, and remediation

automation rules via code. These policies set

runtime guardrails, preventing unauthorized

changes, imposition of security perimeters, and

safe fallback automation (e.g., traffic throttling,

container isolation, certificate rotation).

Combining cognitive agents with such policy

engines offers a path to auditable, explainable,

and compliant automation. An agent powered by

an LLM can consume, understand, and enforce

policy constraints as part of real-time decision-

making—e.g., deciding between remediation

alternatives based on risk posture or SLA impact.

Escalation to human approval is also possible

where there is uncertainty or high-impact action,

thereby offering a human-in-the-loop model of

governance.

Agent Autonomy, Memory, and Reasoning in SR

SRE autonomous agents are rapidly evolving

from being passive interpreters of log data to

active copilots of operational tasks. Novel

systems have shown LLM-powered copilots for

log analysis, metric regression, alert

summarization, and change-impact prediction.

The copilots assist engineers in detecting failure

patterns, predicting service degradation, and

rollback strategy recommendations. However,

there are still key challenges. Most current agents

lack persistent memory or state tracking and

therefore cannot be employed to understand

incident timelines, cross-incident correlations, or

previous remediation knowledge. In addition, it

is difficult to impose safe action boundaries on

LLM-based agents in the lack of strong

alignment mechanisms and policy conditioning.

In addition, while cognitive agents can reason

about action sequences, they lack the capacity to

hold context during long-term interaction,

differentiate between unsafe and safe commands,

and escalate in a proper way in the event of low

confidence. This necessitates systematic

interventions such as episodic memory systems,

confidence thresholds, and intent verification

protocols in order to make the autonomous

decisions in real-world contexts efficient as well

as reliable.

406

III. METHODOLOGY

System Architecture Overview

The Cognitive DevOps Assistant (CDA) is a

modular agentic system designed to augment

modern SRE and DevSecOps pipelines with

explainable, secure, and context-aware

automation. The foundation integrates real-time

observability data, LLM-based reasoning, policy-

based decision gates, and human-in-the-loop

interface. The primary components are:

Ingestion Layer: Talks to modern observability

systems (e.g., OpenTelemetry, Prometheus,

ELK, Grafana Loki, Jaeger) to ingest structured

and unstructured telemetry data like logs,

metrics, traces, alerts, diffs, and deployment

events. Normalizes the data into a semantic

format that can be consumed by agent

processing.

Reasoning Engine: An agentic core LLM in

CDA, based on architectures such as ReAct

(Reasoning + Acting), AutoGen, or LangGraph.

They aid the agent in incremental reasoning,

calling on tools (e.g., metric query APIs, CI/CD

systems, config diffs), accessing memory, and

planning action sequences. The engine is

asynchronous to enable concurrent workflows in

parallel with state carried over time

DevSecOps Interface: Policy-driven automation

is facilitated by policy engine integration like

Open Policy Agent (OPA), KevOps, or

SPIFFE/SPIRE. All CDA decisions (e.g.,

rollback, scaling, service kill, access revocation)

are checked against runtime and compliance

policies before running, hence automated

decisions are kept within safe and governed

boundaries.

Human-in-the-Loop Control Plane: Dynamic UI

and alerting offer insight into the reasoning and

decision-making of the agent. Dangerous actions,

ambiguous conditions, or policy rejection

automatically escalate to a human SRE or

security engineer for override, review, or

additional context injection

Logging & Compliance Module: Everything, i.e.,

its context, reason chain, tool outputs, and policy

evaluation results, is logged irreversibly. Such

logs form a ground truth audit trail to enable

post-incident analysis, compliance audits, and

continuous model improvement.

Reasoning Pipeline:The decision-making

pipeline of the agent has an iterative action and

reasoning loop rooted in human cognition and

based on the ReAct/AutoGen framework and

contains the following steps:

Perception:The agent processes observability

signals (e.g., CPU/memory spikes, unusual

latencies, 500-level errors, unusual config

changes). A semantic normalizer translates

varied input data to a form understandable by an

agent through light-weight tagging (sensitivity

log severity, anomaly scores).

Reflection:The agent queries its episodic

memory for comparable past experiences,

corresponding repairs, and outcomes.It uses

vector similarity or retrieval-augmented

generation (RAG) to synthesize historical

context into its current reasoning.

407

Decision (Chain-of-Thought Reasoning):The

agent reasons serially, decomposing the situation

into tasks (i.e., find probable root cause, query

affected services, suggest rollback).Every step of

logic can then potentially call external tools via

API plugins—e.g., asking for time-series deltas

from Prometheus, or receiving deployment

history from Spinnaker or ArgoCD.

Policy Check (Validation Gate):The suggested

actions (restart pod, certificate revocation,

replica count increase, etc.) are then offered for

decision-making to policy engines such as OPA

or KevOps.Policies analyze compliance, risk,

users' roles, SLA impact, and possible security

exceptions prior to approval.

Execution / Recommendation:If operations are

authorized and risk levels are minimal, they are

executed autonomously through secure APIs

(e.g., Kubernetes API server, GitOps). In

uncertain or high-stakes scenarios, actions are

labeled as suggestions, which trigger the human-

in-the-loop process for authorization.

Memory Update: Upon taking action or

escalation, the agent stores results,

success/failure indicators, and context labels in

its internal memory to facilitate learning for

subsequent decisions.

Figure 1: AIOps and Machine Learning for

Observability

IV. BENEFITS

The Cognitive DevOps Assistant (CDA)

delivers several key advantages to modern

SRE workflows. First, it enables speeded-

up diagnosis through multi-modal

reasoning by ingesting observability data

from diverse sources—logs, metrics,

traces, change diffs, and policy events—

and applying LLM-based analysis to

dynamically correlate symptoms across

infrastructure layers. This approach

outperforms traditional rule-based systems

by adjusting its reasoning in real time,

significantly improving root-cause

isolation and reducing alert fatigue.

Second, CDA contributes to a substantial

reduction in Mean Time to Resolution

(MTTR) by leveraging automated

playbooks, invoking contextually relevant

tools, and initiating safe remediation paths

based on policy thresholds and operator

overrides. This minimizes delays typically

caused by manual triage, tool switching,

408

and ambiguous debugging processes.

Third, it reduces toil by autonomously

handling routine tasks such as

configuration drift detection, scaling

adjustments, log triage, and deployment

validations—freeing SREs to focus on

strategic reliability improvements. Over

time, CDA’s adaptive learning and

contextual intelligence—powered by a

persistent memory module—enable it to

recall previous incidents, compare them

with ongoing issues, and refine its

responses based on organizational context

and historical outcomes. Lastly, its

integration with DevSecOps policy

engines ensures all actions, whether

autonomous or suggested, are governed by

formal security, compliance, and

operational policies. Each decision is

accompanied by a logged reasoning trail,

tool outputs, and policy justifications,

thereby ensuring auditability,

transparency, and regulatory alignment.

V. DRAWBACKS

Despite its capabilities, CDA introduces

several important challenges and

limitations. One significant concern is the

restricted explainability of its reasoning

process. Although intermediate steps (e.g.,

ReAct chains) are visible, the internal

LLM-driven decision logic and tool

orchestration often remain opaque, making

it difficult to trace the root of agent-

induced failures or unexpected behavior—

especially in compliance-sensitive

environments. Moreover, the system

carries security and autonomy risks,

particularly when operating in production

environments. Faulty inputs, policy

misconfigurations, or LLM hallucinations

may lead to damaging actions, such as

unauthorized deletions or compliance

violations, unless strict safeguards and

human checkpoints are enforced. Another

concern is error amplification through

memory and self-feedback: if the agent

erroneously learns from past mistakes

(e.g., misclassified incidents or failed

remediations labeled as successes), it can

reinforce harmful behavior. This

underscores the need for memory

validation, audit pipelines, and human-in-

the-loop oversight. Additionally, trust and

adoption can be hindered by skepticism

among engineers, especially in high-risk or

ambiguous scenarios where agent logic

does not align with established SRE

practices. This may lead to increased

overrides or parallel manual workflows,

reducing automation value. Finally,

tooling complexity and integration

overhead pose practical barriers to

widespread adoption. Deploying CDA at

scale requires robust connectivity with

observability platforms, CI/CD systems,

policy engines, and cloud APIs. Ensuring

409

secure and fault-tolerant integration—

especially in hybrid, air-gapped, or multi-

vendor environments—can present

substantial architectural and operational

challenges.

VI. RESULTS

To measure the potential value of the Cognitive

DevOps Assistant (CDA), we carried out a series

of simulated and case-based experiments based

on representative SRE workflows. Experiments

compared CDA performance against legacy

manual incident management processes on

critical operational metrics. While exact results

depend on deployment size, infrastructure

maturity, and observability tooling, the following

results are conservative, domain-representative

gains seen under controlled scenarios.

Performance Metrics Summary

Metric Baseline (Manual SRE) CDA Agentic SRE

%

Improvement

Incident Diagnosis

Accuracy 78% 92% 0.18

Mean Time To

Resolution (MTTR) 79 minutes 44 minutes −44%

False Positive Rate

(Alert Triage) 12% 6% −50%

SRE Workload

Reduction

(Tickets/mo) 100 54 −46%

Metric Interpretations and Observations

Incident Diagnosis Accuracy (+18%)

The CDA showed major improvement in

accurately diagnosing root causes at initial triage.

By leveraging memory search, log

summarization, trace correlation, and systematic

tool invocation (e.g., querying metric anomalies

followed by configuration diff inspection), the

agent was able to eliminate misdiagnoses due to

frequent sources such as noisy alerts or

configuration drift. In intermittent failure or

cascading failure scenarios, the agent performed

better compared to static rule-based techniques

by reasoning step chaining across a sequence of

signal types.

Example case: A memory leak in a backend

service, appearing as intermittent 502 errors, was

diagnosed by the CDA in < 3 reasoning cycles

based on previous case memory and anomaly

time series analysis. SRE teams normally

attributed this to load balancer misconfiguration

and took longer to resolve.

Mean Time To Resolution (−44%)

The agent's capacity to perform partial or

complete remediation processes (e.g., pod

410

restarts, feature flag rollbacks, autoscaling)

resulted in a radical reduction in average MTTR.

In the case of medium-urgency incidents, CDA

autonomously fixed ~35% of incidents within

10–15 minutes of alert detection, particularly

those with repeatable failure patterns with known

fixes. In high-severity or fuzzy incidents, CDA

notably accelerated the diagnostic phase and

suggested actions that minimized mean manual

resolution time.

Example case: Misbehaving deployment caused

an increased rate of HTTP 500s. The agent

detected a recently added commit as the probable

cause, verified rollback policies with OPA, and

auto-executed the rollback with complete audit

trace—reducing the MTTR from ~70 minutes to

~18.

False Positive Rate in Alert Triage (−50%)

By integrating statistical anomaly detection with

contextual reasoning and policy filters, the agent

reduced the false positive rate during alert triage

in half. A large number of low-severity alerts

like one-time CPU spikes or log chatter were

properly labeled as non-actionable based on past

behavior and current system health. Not only did

this enhance signal quality, but also decreased

alert fatigue and cognitive overload for on-call

engineers.

Example scenario: CPU usage exceeded

threshold briefly for an alert during a batch job

run. Though manual systems triggered

escalation, the CDA identified the behavior as

normal and suppressed alert propagation.

SRE Workload Reduction (−46%)

Across a month-long simulation window, the

total volume of incidents requiring human

intervention dropped by nearly half. The CDA

resolved or de-escalated a significant portion of

low- and medium-complexity tickets, reducing

operational “toil.” Notably, resolution quality

remained high even in autonomous actions due

to policy constraints and memory-driven

validation mechanisms. This workload reduction

directly correlates with improved on-call quality

of life and frees engineering time for strategic

reliability improvements.

Example scenario: Automated routine scalability

tunings, SSL renewal checks, and temporary pod

restarts. Manual tickets for these categories

declined by ~70%.

Additional Observations

Trust Calibration: During early adoption periods,

operators tended to review CDA decisions in

many cases. As time went on and accuracy and

reliability were proven, approval rates for CDA-

suggested actions rose by 30%, reflecting

increasing operator confidence.

Memory Utility: Persistent memory played a

direct role in better performance over time.

During week 4, repeat incident resolution time

was enhanced by another 12% from week 1,

demonstrating adaptive learning in effect.

Escalation Handling: CDA appropriately

escalated to human review in 100% of policy

rejection or unclear reasoning cases (e.g.,

contradicting signal interpretation), without

performing any unsafe or unauthorized action.

411

VII. Conclusion

This paper presents the Cognitive DevOps

Assistant (CDA), a practical application of

agentic AI that enhances modern Site Reliability

Engineering (SRE) and DevSecOps by

combining large language model (LLM)

reasoning, dynamic tool orchestration, and

policy-based governance. Unlike traditional

AIOps or static automation, the CDA can process

diverse observability data, recall past incidents,

plan and execute actions, and learn from

outcomes—all within defined security and

compliance boundaries. It reduces mean time to

resolution (MTTR), improves incident accuracy,

and lightens engineer workload by acting as an

intelligent, policy-aware copilot. As

organizations scale, the need for transparent,

secure, and adaptive automation grows, and

while cognitive agents offer powerful support,

they must also remain explainable, auditable, and

safe. Future developments will focus on domain-

specific fine-tuning, noise filtering, ethical

constraints, and human-AI collaboration to

ensure these systems continue to build trust and

deliver value in real-world operations.

References

[1] Ahmed, S., Saeed, M. K., & Khokhar, A.

(2025). OSI Stack Redesign for Quantum

Networks: Requirements, Technologies,

Challenges, and Future Directions. arXiv

preprint arXiv:2506.12195.

[2] Joshi, S. (2025). A Review of Generative AI

and DevOps Pipelines: CI/CD, Agentic

Automation, MLOps Integration, and Large

Language Models. CD, Agentic Automation,

MLOps Integration, and Large Language

Models (June 01, 2025).

[3] Bhattarai, B. (2025). Scaling Generative AI

for Self-Healing DevOps Pipelines:

Technical Analysis.

[4] Tanikonda, A., Katragadda, S. R., Peddinti, S.

R., & Pandey, B. K. (2021). Integrating AI-

Driven Insights into DevOps Practices.

Journal of Science & Technology, 2(1).

[5] Mustafa, N. (2025). Intelligent Automation

in DevOps: Leveraging Machine Learning

and Cloud Computing for Predictive

Deployment and Performance Optimization.

Available at SSRN 5315260.

[6] Ganesan, P., & Sanodia, G. (2023). Smart

Infrastructure Management: Integrating AI

with DevOps for Cloud-Native Applications.

Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-E163. DOI: doi.

org/10.47363/JAICC/2023 (2) E163 J Arti

Inte & Cloud Comp, 2(1), 2-4.

[7] Everett, W. (2024). Generative AI for

DevOps: Automating Code Review,

Testing, and Deployment Strategies.

[8] Nelavelli, S. (2025). DevOps Assistants:

The Rise of AI Co-Pilots in Cloud

Infrastructure Management. Journal of

Computer Science and Technology

Studies, 7(3), 941-945.

