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Abstract- This work introduces the Cognitive 

DevOps Assistant (CDA)—an intelligent AI 

system designed to help SRE and DevSecOps 

teams manage the growing complexity of 

modern infrastructure. Powered by advanced 

frameworks like ReAct and AutoGen, the CDA 

doesn’t just detect problems—it understands 

them. It analyzes logs, metrics, traces, and 

changes across systems, recalls past incidents, 

reasons through what’s happening, and takes 

safe, policy-compliant actions like rollbacks or 

scaling, with human oversight built in. It’s more 

than automation—it’s intelligent collaboration. 

Drawing on insights from over 30 recent studies, 

the CDA shows clear benefits: faster incident 

resolution, less noise, and reduced workload for 

engineers. It even uses causal AI to go beyond 

surface-level symptoms and get to the real root 

of a problem. This all happens within a broader 

shift toward Cognitive Agents in AIOps—AI that 

can think, learn, and act in real time to keep 

systems healthy and secure. These agents thrive 

on observability—rich data from logs, metrics, 

and traces—that gives them the context they 

need to make smart decisions. In parallel, 

DevSecOps practices ensure that every step—

from code to production—remains secure and 

compliant. Cognitive agents can support this by 

automatically catching vulnerabilities and 

enforcing security rules. Together, this blend of 

AI, observability, and DevSecOps creates a 

powerful ecosystem where systems not only stay 

reliable but get smarter over time. The result? 

More uptime, less stress for engineers, and a 

future where AI is a trusted partner in keeping 

everything running smoothly.                                

Keywords: Cognitive agent, AIOps, 

Observability, Site Reliability Engineering, 

Agentic AI, DevSecOps 

I. INTRODUCTION 

Modern Site Reliability Engineering 

(SRE) teams are grappling with 

unprecedented complexity. Today's 

systems are composed of thousands of 

microservices, deployed continuously 

across distributed, hybrid cloud 

environments. Engineers must maintain 

service reliability while navigating real-
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time telemetry, dynamic system states, and 

ever-evolving deployment pipelines. As a 

result, incidents are no longer isolated 

events—they're often emergent 

phenomena that span infrastructure, 

application layers, and third-party 

dependencies. In such an environment, 

incident response must be faster, more 

intelligent, and more adaptable than ever 

before. Yet, SREs often find themselves 

buried under noisy alerts, disconnected 

tooling, and a flood of observability data—

from logs and metrics to traces, change 

diffs, and compliance events. Extracting 

actionable insight from this heterogeneous 

data in real time is no longer a task suited 

to human cognition alone. Even 

experienced engineers can miss weak 

signals, misinterpret correlated symptoms, 

or delay remediation due to mental fatigue 

or information overload. While AIOps has 

helped automate some routine 

operations—such as anomaly detection or 

alert suppression—it largely relies on 

heuristic or pattern-based models. These 

systems lack the ability to reason about 

context, recall past events meaningfully, or 

take nuanced action in unfamiliar or 

evolving scenarios. In short, they are not 

“cognitive.” This is where Cognitive 

Agentic AI—powered by recent advances 

in Large Language Models (LLMs) and 

tool-using agents (e.g., ReAct, 

AutoGen)—can offer transformative 

potential. These agentic frameworks 

enable an LLM not just to process text or 

telemetry, but to think through a situation, 

act upon it using system APIs or 

observability tools, and remember past 

decisions and their outcomes. With 

properly designed memory, reflection, and 

policy constraints, such agents can 

participate in high-stakes operational 

workflows—diagnosing issues, proposing 

remediations, querying services, or 

initiating safe actions—while staying 

accountable, interpretable, and under 

human supervision. This paper introduces 

the Cognitive DevOps Assistant (CDA): a 

system that embodies these principles to 

assist modern SRE teams in real-world 

cognitive scenarios. The CDA is designed 

to analyze telemetry data, detect 

anomalies, reason about system state, 

interact with tooling, enforce DevSecOps 

policies, and coordinate with human 

operators when ambiguity or risk demands 

caution. Far from replacing engineers, the 

CDA serves as a trusted copilot—

automating toil, accelerating incident 

response, and preserving human attention 

for judgment, creativity, and strategic 

reliability improvements. We evaluate the 

CDA across multiple axes—efficiency, 

safety, trust, and integration effort—and 

show how such systems can reshape the 

way reliability engineering is practiced. 

Our findings suggest that when cognitive 
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agents are grounded in observability, 

policies, and human-in-the-loop design, 

they can not only boost operational 

performance but also foster trust, 

transparency, and long-term learning 

across complex DevOps environments. 

II. LITERATURE REVIEW 

1. AIOps and Machine Learning for 

Observability 

The application of AIOps in modern 

observability tools has come a long way in 

the recent past, primarily through applying 

machine learning (ML) techniques to make 

operational processes more effective and 

accurate. Traditional observability tools 

such as Prometheus, ELK stack, Datadog, 

and New Relic generate massive amounts 

of telemetry, and it is not possible for 

humans to filter, correlate, and diagnose 

all potential signals in real time. Initial 

AIOps solutions employed heuristic 

filtering and supervised learning 

techniques—such as clustering for noise 

filtering, decision trees for classifying 

alerts, and linear models for anomaly 

detection. Useful with structured data and 

cyclic failure patterns, these techniques 

fail to generalize to new or surprise 

instances since they lack understanding of 

context and are rigidly reliant on training. 

Recent advances in transformer models 

and few-shot learning with Large 

Language Models (LLMs) have made new 

opportunities available for managing 

unstructured observability data such as 

natural language incident reports, config 

diffs, and support tickets. For instance, 

transformer models now contextualize 

multi-modal inputs (for instance, logs + 

traces + deployment records) and produce 

human-readable explanations or root-cause 

hypotheses. Exciting as they are, such 

models are presently ungrounded in 

memory, non-deterministic in control, and 

lacking safety constraints necessary for 

robust deployment in production 

environments. 

Cognitive Architectures and Agentic AI 

Frameworks 

To surpass shallow automation, researchers have 

developed cognitive agent models that can 

implement reasoning, memory, and tool 

interaction in real-world settings. Architectures 

such as ReAct (Reasoning + Acting) and 

AutoGen equip LLM-based agents with the 

ability to switch between natural language 

thought patterns and API calls and command-line 

actions, thus enabling multi-step decision-

making and recursive problem-solving. 

Frameworks such as LangChain and LangGraph 

offer systematic abstractions for modular 

choreography of tools, multi-agent 

communication, and stateful memory. These 

frameworks allow agents to chain across multiple 
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tools (e.g., querying a metrics database, checking 

against a compliance API, calling a rollback), 

pass context across multiple interaction steps, 

and produce explainable, step-by-step reasoning 

traces. It is crucial in remediation based on 

observability where historical context, prior 

actions, and tool results are utilized to decide on 

future decision branches. Furthermore, these 

frameworks are more and more bringing 

multimodal interfaces (e.g., dashboards, time-

series views, charts) and supporting agents that 

can reason over parallel structured + unstructured 

data, a feature of high utility for SRE workflows 

dealing with heterogeneous data modalities. 

Policy-Based DevSecOps Automation 

DevSecOps now integrates security and 

compliance policies across every phase of the 

software lifecycle, from build-time to runtime. 

Policy-as-code engines such as Open Policy 

Agent (OPA), SPIFFE/SPIRE, Kyverno, and 

KevOps allow organizations to formalize and 

enforce authentication, network access, 

configuration compliance, and remediation 

automation rules via code. These policies set 

runtime guardrails, preventing unauthorized 

changes, imposition of security perimeters, and 

safe fallback automation (e.g., traffic throttling, 

container isolation, certificate rotation). 

Combining cognitive agents with such policy 

engines offers a path to auditable, explainable, 

and compliant automation. An agent powered by 

an LLM can consume, understand, and enforce 

policy constraints as part of real-time decision-

making—e.g., deciding between remediation 

alternatives based on risk posture or SLA impact. 

Escalation to human approval is also possible 

where there is uncertainty or high-impact action, 

thereby offering a human-in-the-loop model of 

governance. 

Agent Autonomy, Memory, and Reasoning in SR 

SRE autonomous agents are rapidly evolving 

from being passive interpreters of log data to 

active copilots of operational tasks. Novel 

systems have shown LLM-powered copilots for 

log analysis, metric regression, alert 

summarization, and change-impact prediction. 

The copilots assist engineers in detecting failure 

patterns, predicting service degradation, and 

rollback strategy recommendations. However, 

there are still key challenges. Most current agents 

lack persistent memory or state tracking and 

therefore cannot be employed to understand 

incident timelines, cross-incident correlations, or 

previous remediation knowledge. In addition, it 

is difficult to impose safe action boundaries on 

LLM-based agents in the lack of strong 

alignment mechanisms and policy conditioning. 

In addition, while cognitive agents can reason 

about action sequences, they lack the capacity to 

hold context during long-term interaction, 

differentiate between unsafe and safe commands, 

and escalate in a proper way in the event of low 

confidence. This necessitates systematic 

interventions such as episodic memory systems, 

confidence thresholds, and intent verification 

protocols in order to make the autonomous 

decisions in real-world contexts efficient as well 

as reliable. 
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III. METHODOLOGY 

 

System Architecture Overview 

The Cognitive DevOps Assistant (CDA) is a 

modular agentic system designed to augment 

modern SRE and DevSecOps pipelines with 

explainable, secure, and context-aware 

automation. The foundation integrates real-time 

observability data, LLM-based reasoning, policy-

based decision gates, and human-in-the-loop 

interface. The primary components are: 

Ingestion Layer: Talks to modern observability 

systems (e.g., OpenTelemetry, Prometheus, 

ELK, Grafana Loki, Jaeger) to ingest structured 

and unstructured telemetry data like logs, 

metrics, traces, alerts, diffs, and deployment 

events. Normalizes the data into a semantic 

format that can be consumed by agent 

processing.  

Reasoning Engine: An agentic core LLM in 

CDA, based on architectures such as ReAct 

(Reasoning + Acting), AutoGen, or LangGraph. 

They aid the agent in incremental reasoning, 

calling on tools (e.g., metric query APIs, CI/CD 

systems, config diffs), accessing memory, and 

planning action sequences. The engine is 

asynchronous to enable concurrent workflows in 

parallel with state carried over time 

DevSecOps Interface: Policy-driven automation 

is facilitated by policy engine integration like 

Open Policy Agent (OPA), KevOps, or 

SPIFFE/SPIRE. All CDA decisions (e.g., 

rollback, scaling, service kill, access revocation) 

are checked against runtime and compliance 

policies before running, hence automated 

decisions are kept within safe and governed 

boundaries. 

Human-in-the-Loop Control Plane: Dynamic UI 

and alerting offer insight into the reasoning and 

decision-making of the agent. Dangerous actions, 

ambiguous conditions, or policy rejection 

automatically escalate to a human SRE or 

security engineer for override, review, or 

additional context injection 

Logging & Compliance Module: Everything, i.e., 

its context, reason chain, tool outputs, and policy 

evaluation results, is logged irreversibly. Such 

logs form a ground truth audit trail to enable 

post-incident analysis, compliance audits, and 

continuous model improvement. 

Reasoning Pipeline:The decision-making 

pipeline of the agent has an iterative action and 

reasoning loop rooted in human cognition and 

based on the ReAct/AutoGen framework and 

contains the following steps: 

Perception:The agent processes observability 

signals (e.g., CPU/memory spikes, unusual 

latencies, 500-level errors, unusual config 

changes). A semantic normalizer translates 

varied input data to a form understandable by an 

agent through light-weight tagging (sensitivity 

log severity, anomaly scores). 

Reflection:The agent queries its episodic 

memory for comparable past experiences, 

corresponding repairs, and outcomes.It uses 

vector similarity or retrieval-augmented 

generation (RAG) to synthesize historical 

context into its current reasoning. 
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Decision (Chain-of-Thought Reasoning):The 

agent reasons serially, decomposing the situation 

into tasks (i.e., find probable root cause, query 

affected services, suggest rollback).Every step of 

logic can then potentially call external tools via 

API plugins—e.g., asking for time-series deltas 

from Prometheus, or receiving deployment 

history from Spinnaker or ArgoCD. 

Policy Check (Validation Gate):The suggested 

actions (restart pod, certificate revocation, 

replica count increase, etc.) are then offered for 

decision-making to policy engines such as OPA 

or KevOps.Policies analyze compliance, risk, 

users' roles, SLA impact, and possible security 

exceptions prior to approval. 

Execution / Recommendation:If operations are 

authorized and risk levels are minimal, they are 

executed autonomously through secure APIs 

(e.g., Kubernetes API server, GitOps). In 

uncertain or high-stakes scenarios, actions are 

labeled as suggestions, which trigger the human-

in-the-loop process for authorization. 

Memory Update: Upon taking action or 

escalation, the agent stores results, 

success/failure indicators, and context labels in 

its internal memory to facilitate learning for 

subsequent decisions. 

 

Figure 1: AIOps and Machine Learning for 

Observability 

IV. BENEFITS 

The Cognitive DevOps Assistant (CDA) 

delivers several key advantages to modern 

SRE workflows. First, it enables speeded-

up diagnosis through multi-modal 

reasoning by ingesting observability data 

from diverse sources—logs, metrics, 

traces, change diffs, and policy events—

and applying LLM-based analysis to 

dynamically correlate symptoms across 

infrastructure layers. This approach 

outperforms traditional rule-based systems 

by adjusting its reasoning in real time, 

significantly improving root-cause 

isolation and reducing alert fatigue. 

Second, CDA contributes to a substantial 

reduction in Mean Time to Resolution 

(MTTR) by leveraging automated 

playbooks, invoking contextually relevant 

tools, and initiating safe remediation paths 

based on policy thresholds and operator 

overrides. This minimizes delays typically 

caused by manual triage, tool switching, 
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and ambiguous debugging processes. 

Third, it reduces toil by autonomously 

handling routine tasks such as 

configuration drift detection, scaling 

adjustments, log triage, and deployment 

validations—freeing SREs to focus on 

strategic reliability improvements. Over 

time, CDA’s adaptive learning and 

contextual intelligence—powered by a 

persistent memory module—enable it to 

recall previous incidents, compare them 

with ongoing issues, and refine its 

responses based on organizational context 

and historical outcomes. Lastly, its 

integration with DevSecOps policy 

engines ensures all actions, whether 

autonomous or suggested, are governed by 

formal security, compliance, and 

operational policies. Each decision is 

accompanied by a logged reasoning trail, 

tool outputs, and policy justifications, 

thereby ensuring auditability, 

transparency, and regulatory alignment. 

V. DRAWBACKS 

Despite its capabilities, CDA introduces 

several important challenges and 

limitations. One significant concern is the 

restricted explainability of its reasoning 

process. Although intermediate steps (e.g., 

ReAct chains) are visible, the internal 

LLM-driven decision logic and tool 

orchestration often remain opaque, making 

it difficult to trace the root of agent-

induced failures or unexpected behavior—

especially in compliance-sensitive 

environments. Moreover, the system 

carries security and autonomy risks, 

particularly when operating in production 

environments. Faulty inputs, policy 

misconfigurations, or LLM hallucinations 

may lead to damaging actions, such as 

unauthorized deletions or compliance 

violations, unless strict safeguards and 

human checkpoints are enforced. Another 

concern is error amplification through 

memory and self-feedback: if the agent 

erroneously learns from past mistakes 

(e.g., misclassified incidents or failed 

remediations labeled as successes), it can 

reinforce harmful behavior. This 

underscores the need for memory 

validation, audit pipelines, and human-in-

the-loop oversight. Additionally, trust and 

adoption can be hindered by skepticism 

among engineers, especially in high-risk or 

ambiguous scenarios where agent logic 

does not align with established SRE 

practices. This may lead to increased 

overrides or parallel manual workflows, 

reducing automation value. Finally, 

tooling complexity and integration 

overhead pose practical barriers to 

widespread adoption. Deploying CDA at 

scale requires robust connectivity with 

observability platforms, CI/CD systems, 

policy engines, and cloud APIs. Ensuring 
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secure and fault-tolerant integration—

especially in hybrid, air-gapped, or multi-

vendor environments—can present 

substantial architectural and operational 

challenges. 

VI. RESULTS 

To measure the potential value of the Cognitive 

DevOps Assistant (CDA), we carried out a series 

of simulated and case-based experiments based 

on representative SRE workflows. Experiments 

compared CDA performance against legacy 

manual incident management processes on 

critical operational metrics. While exact results 

depend on deployment size, infrastructure 

maturity, and observability tooling, the following 

results are conservative, domain-representative 

gains seen under controlled scenarios. 

Performance Metrics Summary 

 

Metric Baseline (Manual SRE) CDA Agentic SRE 

% 

Improvement 

Incident Diagnosis 

Accuracy 78% 92% 0.18 

Mean Time To 

Resolution (MTTR) 79 minutes 44 minutes −44% 

False Positive Rate 

(Alert Triage) 12% 6% −50% 

SRE Workload 

Reduction 

(Tickets/mo) 100 54 −46% 

 

Metric Interpretations and Observations 

Incident Diagnosis Accuracy (+18%) 

The CDA showed major improvement in 

accurately diagnosing root causes at initial triage. 

By leveraging memory search, log 

summarization, trace correlation, and systematic 

tool invocation (e.g., querying metric anomalies 

followed by configuration diff inspection), the 

agent was able to eliminate misdiagnoses due to 

frequent sources such as noisy alerts or 

configuration drift. In intermittent failure or 

cascading failure scenarios, the agent performed 

better compared to static rule-based techniques 

by reasoning step chaining across a sequence of 

signal types. 

Example case: A memory leak in a backend 

service, appearing as intermittent 502 errors, was 

diagnosed by the CDA in < 3 reasoning cycles 

based on previous case memory and anomaly 

time series analysis. SRE teams normally 

attributed this to load balancer misconfiguration 

and took longer to resolve. 

Mean Time To Resolution (−44%) 

The agent's capacity to perform partial or 

complete remediation processes (e.g., pod 
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restarts, feature flag rollbacks, autoscaling) 

resulted in a radical reduction in average MTTR. 

In the case of medium-urgency incidents, CDA 

autonomously fixed ~35% of incidents within 

10–15 minutes of alert detection, particularly 

those with repeatable failure patterns with known 

fixes. In high-severity or fuzzy incidents, CDA 

notably accelerated the diagnostic phase and 

suggested actions that minimized mean manual 

resolution time. 

Example case: Misbehaving deployment caused 

an increased rate of HTTP 500s. The agent 

detected a recently added commit as the probable 

cause, verified rollback policies with OPA, and 

auto-executed the rollback with complete audit 

trace—reducing the MTTR from ~70 minutes to 

~18. 

False Positive Rate in Alert Triage (−50%) 

By integrating statistical anomaly detection with 

contextual reasoning and policy filters, the agent 

reduced the false positive rate during alert triage 

in half. A large number of low-severity alerts 

like one-time CPU spikes or log chatter were 

properly labeled as non-actionable based on past 

behavior and current system health. Not only did 

this enhance signal quality, but also decreased 

alert fatigue and cognitive overload for on-call 

engineers. 

Example scenario: CPU usage exceeded 

threshold briefly for an alert during a batch job 

run. Though manual systems triggered 

escalation, the CDA identified the behavior as 

normal and suppressed alert propagation. 

SRE Workload Reduction (−46%) 

Across a month-long simulation window, the 

total volume of incidents requiring human 

intervention dropped by nearly half. The CDA 

resolved or de-escalated a significant portion of 

low- and medium-complexity tickets, reducing 

operational “toil.” Notably, resolution quality 

remained high even in autonomous actions due 

to policy constraints and memory-driven 

validation mechanisms. This workload reduction 

directly correlates with improved on-call quality 

of life and frees engineering time for strategic 

reliability improvements. 

Example scenario: Automated routine scalability 

tunings, SSL renewal checks, and temporary pod 

restarts. Manual tickets for these categories 

declined by ~70%. 

Additional Observations 

Trust Calibration: During early adoption periods, 

operators tended to review CDA decisions in 

many cases. As time went on and accuracy and 

reliability were proven, approval rates for CDA-

suggested actions rose by 30%, reflecting 

increasing operator confidence. 

Memory Utility: Persistent memory played a 

direct role in better performance over time. 

During week 4, repeat incident resolution time 

was enhanced by another 12% from week 1, 

demonstrating adaptive learning in effect.  

Escalation Handling: CDA appropriately 

escalated to human review in 100% of policy 

rejection or unclear reasoning cases (e.g., 

contradicting signal interpretation), without 

performing any unsafe or unauthorized action. 
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VII. Conclusion 

This paper presents the Cognitive DevOps 

Assistant (CDA), a practical application of 

agentic AI that enhances modern Site Reliability 

Engineering (SRE) and DevSecOps by 

combining large language model (LLM) 

reasoning, dynamic tool orchestration, and 

policy-based governance. Unlike traditional 

AIOps or static automation, the CDA can process 

diverse observability data, recall past incidents, 

plan and execute actions, and learn from 

outcomes—all within defined security and 

compliance boundaries. It reduces mean time to 

resolution (MTTR), improves incident accuracy, 

and lightens engineer workload by acting as an 

intelligent, policy-aware copilot. As 

organizations scale, the need for transparent, 

secure, and adaptive automation grows, and 

while cognitive agents offer powerful support, 

they must also remain explainable, auditable, and 

safe. Future developments will focus on domain-

specific fine-tuning, noise filtering, ethical 

constraints, and human-AI collaboration to 

ensure these systems continue to build trust and 

deliver value in real-world operations. 
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