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Abstract- Urban commuters are bound to 

be annoyed by dynamic pricing of ride-

hailing services such as Uber, Ola, 

inDrive, Rapido, and Namo Yatri. Lack of 

real-time fare comparison results in 

inefficiencies, higher expenditure, and 

poor visibility of surge patterns. This paper 

introduces RidePulse, an intelligent fare 

aggregation and predictive analytics 

platform that collates real-time fare data 

from different ride-hailing services to a 

single user interface. Using a hybrid model 

of API integration, ethical web scraping, 

and machine learning-based surge 

prediction, RidePulse allows commuters to 

make efficient, cost-effective travel 

choices. Constructed with modular cloud 

architecture and scalable data pipelines, 

RidePulse facilitates not only individual 

decision-making but also urban mobility 

studies and smart transportation policy-

making. 

 

I. INTRODUCTION 

Urban mobility in the last decade has been 

revolutionized to a great extent by ride-

hailing apps, providing real-time, on-

demand mobility to compete with 

traditional taxi networks. Dynamic pricing 

mechanisms employed by these apps with 

algorithms based on traffic, demand, time, 

and weather, though, result in enormous 

fare differences that baffle users. 

Passengers end up checking several apps 

separately to determine the lowest fare, 

which is a lengthy task and fails to lead to 

optimal decisions. 

At the same time, the lack of aggregated 

fare data hinders researchers and urban 

planners in analyzing trends, affordability, 

and service coverage in cities. In 

recognition of such limitations, RidePulse 

offers a new method of aggregating and 

analyzing fare data across modes, 

providing users and mobility stakeholders 

with real-time insights. Its fare spike 

prediction and recommendation of 
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affordable routes make it appropriate for 

both daily commuting and long-term 

infrastructure planning. 

This essay will outline the motivation, 

infrastructural technicalities, approaches, 

and test results that have resulted in the 

creation of RidePulse and elaborates 

further on the ways in which adoption can 

facilitate sustainable and open modes of 

transport in rapidly expanding cities and 

proposes its potential contribution to 

building Mobility-as-a-Service (MaaS). 

II. LITERATURE REVIEW: 

 Studies have investigated the effects of 

dynamic pricing on ride-hailing. Castillo et 

al. (2017) and Zha et al. (2018) outlined 

how algorithms balance supply and 

demand but warned against decreased 

price transparency. Cohen & Shaheen 

(2016) examined user trust in ride-hailing, 

showcasing rising demand for fixed prices. 

MaaS studies by Jittrapirom et al. (2017) 

and Hensher et al. (2020) presented shared 

platforms that combined services, mostly 

public transport. There is scant literature, 

though, on real-time fare aggregation for 

private ride-hailing services. 

Technically, Jiang et al. (2022) promoted 

microservices-based designs for urban 

mobility systems at scale. RidePulse does 

the same through the adoption of RESTful 

APIs, cloud-native deployment, and 

intelligent data pipelines. The literature 

justifies the need for RidePulse's central 

value proposition: transparency, 

prediction, and fare centralization. 

A deeper dive into the literature shows that 

while fare modeling and price fairness are 

ongoing research topics, not many systems 

have explored real-time data consolidation 

at RidePulse's scale and magnitude. 

Existing solutions tend to be static or 

historical data or limit themselves to one 

or two service providers. RidePulse 

addresses these shortcomings by using 

real-time data streams and focusing on 

user-level predictive analytics. 

III. METHODOLOGY:  

RidePulse was created with a multi-

layered methodology combining cutting-

edge software architecture, ethical data 

collection, and robust analytics. 

Microservices on AWS were utilized in 

building the platform, with every action—

data ingest, fare processing, UI delivery, 

and surge prediction—being modular. This 

made RidePulse extremely scalable and 

fault-tolerant with increasing user load. 

For data collection, the system utilized a 

hybrid method. Directly, public APIs of 

firms like Uber and Rapido were utilized. 

For others, web scraping using Puppeteer 

and Selenium automatically retrieved fares 

from mobile-friendly websites. The data 
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collection services were called every 30–

60 seconds through scheduled cron jobs, 

achieving both freshness and server load. 

To honor terms of service and prevent 

unethical scraping, traffic patterns were 

randomized, headless browsers were made 

to simulate real user behavior, and all 

traffic were capped on a per-target 

platform basis. Network inspection and 

automation of fare queries were performed 

according to Indian IT laws and GDPR 

principles. 

After collection, data were standardized to 

a single schema in JSON. Standardization 

allowed for the comparison of fares 

between providers by eliminating time, 

currency, and route form differences. 

Semi-structured real-time fare data were 

stored in MongoDB, and long-term 

analytics were stored in PostgreSQL. 

High-volume requests were processed 

efficiently by AWS SQS using a queue-

based processing mechanism. 

The cleaned data passed through cleaning 

pipelines in which duplicate records, 

invalid values, and outliers (for example, 

extremely high fares due to bugs) were 

identified and flagged or rejected. Time-

dependent fare data was retained for 24 

hours for surge forecasting while long-

term storage was optimized to retain only 

aggregate measures. 

Surge forecasts were modelled by an 

XGBoost regression model trained on a 

half year of fare history. The model used 

contextual features such as location, time 

of day, weather, and past surge events. The 

model achieved a Mean Absolute Error 

(MAE) of 7.6% and was able to detect 

surge events with 76% accuracy in real-

time testing. Exploratory data analysis also 

discovered rush hour, sudden weather 

changes, and certain weekends to be 

causes of repeatable spikes in ride fares.

 

Figure 1:Ridepulse: A Unified Platform 

For Real-Time Ride-Hailing Fare 

Aggregation And Surge Forecasting 

Large-scale testing was conducted using 

Jest and Mocha for functional testing and 

Apache JMeter for load performance with 

99.2% uptime under simulation of up to 

5,000 users. Beta testing in Delhi, 

Lucknow, and Bangalore assisted in fine-

tuning the UI and making it more precise. 

Testers' feedback loops directly led to UI 
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optimisations, loading time minimization, 

and exception handling. 

Security and privacy were addressed 

through OAuth authentication, user 

identifier anonymization, and secure TLS 

communication for all data transfer. Logs 

were encrypted and stored for audit 

compliance. These solutions enabled 

RidePulse to process commuter sensitive 

data ethically while delivering high 

availability and performance. 

IV. ADVANTAGES: 

• Unified Fare Transparency: 

Consolidates fares of Ola, Uber, 

Rapido, inDrive, and Namo Yatri, 

eliminating the app switch. 

• Predictive Insights: Real-time 

alerts of imminent fare increases 

allow riders to delay or bring 

forward trips, saving them dollars. 

• Scalability and Modularity: 

Microservices architecture based to 

scale with addition of new services. 

• Policy Utility: Fare trends 

summarized may be available to 

transport departments for route 

price review. 

• User-Centric Design: Responsive 

UI/UX with a focus on least clicks, 

low latency, and instant insights. 

V. WEAKNESSES / 

DISADVANTAGES: 

• Data Dependency: Platform is 

susceptible to API format change 

or more stringent anti-scraping 

measures. 

• Accuracy Limits: Individual events 

such as roadblocks or protests can 

destabilize predictions. 

• Operational Overhead: Real-time 

systems require frequent server 

maintenance, cost reduction. 

• Regulatory Risks: The legal 

uncertainty of data gathering can 

bring on pressure in stricter 

domains. 

• UI Restriction on Legacy Devices: 

Legacy devices can have difficulty 

loading live maps or large datasets 

in a timely fashion. 
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VI. RESULTS AND FINDINGS 

Table 1: Predictive Analytics Evaluation 

Summary of Results: RidePulse delivered 

strong performance in its goal of fare 

consolidation and surge prediction. It 

maintained rapid response under load, 

offered accurate analytics, and improved 

travel planning outcomes for commuters. 

Users reported increased savings, while 

infrastructure testing proved system 

reliability. RidePulse establishes itself as a 

forward-facing solution for commuter 

empowerment and smart mobility 

integration. 

VII. CONCLUSION: 

RidePulse brings visibility and intelligence 

to urban ride-hailing. By combining real-

time fare data with predictive analytics, it 

not only benefits commuters but also 

builds a data foundation for transport 

researchers and policy architects. Its 

modular, API-first  

 

architecture ensures scalability and 

extensibility to future mobility 

innovations. As cities seek smarter 

solutions, RidePulse offers a blueprint for 

mobility systems that are transparent, 

efficient, and citizen-centric. Further 

enhancements could include integration 

with public transport fares, carbon 

emission tracking, and support for EV-

specific pricing models. With continued 

user feedback and AI model tuning, 

RidePulse is positioned to become a global 

standard for ride pricing visibility. 
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