
261

INTELLIGENT CODE-DRIVEN AWS

ARCHITECTURE MAPPING: STATIC ANALYSIS OF

PYTHON AUTOMATION SCRIPTS FOR SERVICE

IDENTIFICATION AND CLOUD WORKFLOW

VISUALIZATION

Vimal Daga

CTO, LW India | Founder,

#13 Informatics Pvt Ltd

LINUX WORLD PVT.

LTD.

Preeti Daga

CSO, LW India | Founder,

LWJazbaa Pvt Ltd

LINUX WORLD PVT.

LTD.

Sahil Singh

Research Scholar

LINUX WORLD PVT.

LTD.

Abstract-With the paradigm shift of cloud

computing, automation and serverless

Python scripts are increasingly being

utilized by developers to develop scalable

and event-based applications. The process

of transforming such scripts into a

successful and organized cloud

architecture is still a time-consuming,

error-prone activity involving significant

cloud service integration expertise. This

study bridges the gap with the introduction

of an automatic smart cloud architecture

design system based on Python scripts for

AWS-based automation.The system uses

rule-based and semantic analysis methods

to analyze Python code, namely to identify

servicespecific SDK calls (e.g.,

boto3.client('s3')), function declarations,

and event-driven code. e.g., AWS Lambda,

Amazon S3, and Amazon SNS—and

automatically defines a corresponding

architectural workflow. This workflow is

shown as an automatically created

flowchart, which depicts the sequence of

action and service interaction from trigger

to execution to outcome.Our method

ensures low-latency, accurate mappings of

source code to infrastructure components,

accelerating development pace and

architectural insights. This infrastructure

minimizes the need for advanced cloud

expertise in initial development stages and

enables rapid prototyping of cloud-native

applications.

Keywords: Cloud Computing, AWS

Automation, Serverless Architecture,

Analysis of Python Scripts, Cloud Service

Choice, Visualization of Infrastructure,

Boto3, AWS Lambda, Amazon S3,

Amazon SNS.

I. INTRODUCTION

In the past couple of years, cloud

computing has become the backbone of

modern software development, enabling

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

262

developers to code elastic, event-based

applications without worrying about

physical infrastructure management. Of

various paradigms, serverless computing

has been a runaway hit because of the

promise of automated scaling, pay-as-you-

go economics, and instant compatibility

with cloud-native services. Programming

languages such as Python and SDKs such

as Boto3 have become the de facto

standard for scripting automation

workflows on cloud platforms, notably on

Amazon Web Services (AWS). Although

cloud platforms are mature, there is a huge

issue: developers write Python scripts

based on cloud services without any

explicit architectural view of the services

communicating with one another. Existing

cloud design workflows involve manual

configuration through console interfaces or

deep knowledge of Infrastructure-as-Code

(IaC) tools such as AWS CloudFormation

or Terraform. This manual intervention not

only makes misconfiguration more likely

but also delays prototyping and

automation. A survey of the literature on

modern tools sees many tools for cloud

cost estimation, IaC template generation,

and resource provisioning. However,

few—if any—systems exist that are

capable of reading a developer's Python

code, parsing it, and automatically

determining the relevant cloud services

involved and, in parallel, constructing a

flowchart-based architectural visualization

representing the execution pipeline. Most

solutions are deployment-centric and not

concerned with understanding or mapping

infrastructure requirements directly from

code. To address this gap, we present an

intelligent system capable of parsing

Python-based automation and serverless

scripts and determining the exact AWS

services involved, e.g., Lambda, S3, and

SNS. Our system then constructs a

flowchart-based architectural visualization,

giving developers an immediate and clear

idea of the infrastructure workflow their

code implies. This approach applies visual-

first, code-first design thinking to cloud

architecture, making it easier for less

skilled developers to enter and increasing

productivity for cloud experts. The system

consists of a rule-based, semantic engine

to analyze cloud-relevant patterns in

Python source code, a service

classification system to map code snippets

to AWS services, and a dynamic

visualization module to construct

flowcharts illustrating cloud processes

from trigger to output. The article also

touches on scalability, limitations, and

possible extension to cross-cloud

compatibility or AI-based design

suggestion. Closing the source code to

cloud architecture design gap, this work

introduces new methodology to enable

263

more automated, visual, and developer-

centric cloud engineering processes

II. REVIEW OF PAST WORK

The last decade has seen the advent of

cloud computing trigger intense research

in serverless computing, infrastructure

automation, and cloud service

orchestration. Various works explored

models for cloud service selection based

on Quality-of-Service (QoS) features, cost,

and performance characteristics. Although

these models, e.g., Almorsy et al. and Han

et al., are helpful for service comparison

and selection, they also take user-provided

input and cannot independently extract

service requirements from the application

source code. Likewise, Infrastructure-as-

Code (IaC) tools such as AWS

CloudFormation, Terraform, and Pulumi

have gained popularity for infrastructure

automation, with various works

highlighting their advantages in

repeatability and scalability. However,

most of the provided solutions are actually

geared towards explicit, manual definition

of resources and not automatic inference or

visualization from textual code. Reverse

engineering tools like Former2 and

Stackery try to create templates or

diagrams but are hindered by the

requirement of already deployed

environments or manual setup and hence

limit their applicability for pre-deployment

planning. Last but not least, although static

code analyzers and semantic interpreters

have been utilized for security

vulnerability identification, dependencies,

or compliance vulnerabilities in cloud

codebases, these tools neither trace the

actually consumed cloud services nor

provide any architectural overview. In the

serverless context, various works discuss

the advantages and disadvantages of AWS

Lambda, event-driven computing, and

SDK usage such as Boto3 for

programmatic manipulation, but none of

them introduce techniques for extracting

architectural intent from scripts employing

these SDKs. Given the large corpus of

publications describing how to deploy on

clouds and automate approaches, there

remains a gap: no existing methodologies

successfully translate Python-scripted

automation or serverless scripts into an

end-to-end AWS architecture flowchart.

This deficiency relates to the innovation

and necessity of the system to be proposed

to reason about developer code, recognize

relevant AWS services, and present their

relationships—ultimately making cloud

architecture design from the code itself.

III. WORK FLOW USED

The objective of this work is to design an

intelligent system that can analyze Python-

based automation and serverless scripts to

identify relevant AWS cloud services and

264

design a comprehensive architectural

flowchart. The methodology followed in

this work is divided into four key phases:

data collection and preprocessing, script

analysis and pattern identification, cloud

service categorization, and architecture

flowchart design.

Data collection and preprocessing is the

first step, where Python scripts with

automation logic are entered by the user or

gathered. The scripts can include AWS

SDK (boto3) calls, lambda function

declarations, and event-driven patterns.

For standard input and fewer parsing

errors, the scripts go through a light

preprocessing process where comments are

removed, whitespace normalized, and code

tokenized with the Abstract Syntax Tree

(AST) and tokenize libraries in Python.

This provides syntactic cleanliness and

allows further semantic analysis.

The second stage is script pattern matching

and analysis. In this stage, the system uses

a rule-based engine with additional pattern

matching and semantic parsing

components. The AST of the script is

traversed to identify method calls, function

declarations, and imported libraries. Extra

caution is taken to identify service-related

calls such as boto3.client('s3'),

sns.publish(), and lambda handler

functions. These patterns are compared

against a pre-defined knowledge base

mapping code expressions to AWS

services. This stage also includes event

detection—detection of when services are

being invoked (e.g., by an API call, user

upload, or schedule event), which aids in

determining the flow direction and point of

origin of the architecture.

In step 3, cloud services are classified.

After a possible service is found, it's

mapped to its AWS equivalent by a rule-

engine-based or a light-weight machine

learning-based classification layer, which

is trained on labeled script-service pairs.

For example, if a script contains file-

uploading code with put_object, it is

tagged with Amazon S3. If it contains

lambda_handler, it is tagged as an AWS

Lambda function. In the same way, an

occurrence of sns.publish() indicates using

Amazon SNS. This step produces a list of

cloud services being invoked, along with

their order of invocation and dependencies.

The final step is architecture flowchart

generation. The system generates a

directed graph from the service mapping

output, representing the end-to-end cloud

workflow. The graph nodes are linked to

the cloud services (e.g., Lambda, S3,

SNS), and edges represent the order of

execution or data flow. The system

generates the flowchart dynamically in

Mermaid.js syntax, which can be

embedded or exported. For example, a

265

Lambda function writing to S3 and

pushing to SNS was an end-to-end

sequential process: Lambda → S3 → SNS

→ Subscriber. The flowchart is an easy

way for developers to visualize their

application's cloud architecture at a glance

without needing to draw it themselves.

This end-to-end solution allows developers

and researchers to easily toggle between

code and visualization of the cloud

infrastructure. The solution is very

extensible and moving it to other cloud

providers (e.g., Azure, GCP) or more

complete AI-based inference using

transformer models trained on IaC

templates and automation scripts is easy.

Python 3.11, ast, re, and boto3 libraries

were utilized for parsing and Mermaid for

visualization for all the experiments.

Figure 1: AI-Driven AWS Cloud Architecture

IV. ADVANTAGES

1. Code-to-Cloud Automation

The system's primary advantage is that it

automatically converts Python serverless

or automation code into cloud architecture.

It bridges the gap between infrastructure

design and software logic so that

developers get to view the cloud

implications of what they are writing

without the need to translate it manually.

2. Time Efficiency and Rapid Prototyping

By eliminating the need to provision AWS

services by hand or to draw architecture

diagrams, developers can get from concept

to launch much more rapidly. This

facilitates rapid prototyping, especially in

agile and DevOps environments, where

iteration speed matters.

3. Lower Learning Curve

266

Less experienced AWS developers or

novice developers find it difficult to

choose the correct services and

comprehend how they are related. This

model hides such complexity and offers a

visual, intuitive model, simplifying cloud-

native development.

4. Clarity with Visuals Through

Flowcharts

The use of flowcharts offers visual

readability, enabling users to understand

service relationships, triggers, and data

flows better. Visualizations are beneficial

in documentation, training new team

members, and architecture walkthroughs in

team meetings.

5. Early identification of unused or

misused services

With detection of expected AWS services

from code, the system can determine when

services have been used or left out in error.

The early feedback loop eradicates

configuration errors and deployment

failures.

6. Modular and Extensible

The rule-based architecture simplifies its

extension to other cloud platforms (e.g.,

Google Cloud or Microsoft Azure), or

even coupled with more sophisticated NLP

or ML-based engines for better prediction

accuracy.

7. Pre-deployment Analysis

Compared to post-deployment

infrastructure analysis tools, the system

runs pre-deployment, offering early

architectural insight prior to code being

deployed in the cloud, enhancing costing

and planning.

V. DISADVANTAGES

1. Limited to Static Analysis

The current release relies most heavily on

static code checking against Python's

Abstract Syntax Tree (AST). This means

that it might lack dynamic calls to services

or run-time settings made via environment

variables or condition code.

2. AWS-Centric Strategy

The system is therefore AWS-specific and

depends on the boto3 library being

employed. It will not detect services from

the other cloud providers or other SDKs

and is therefore limited in its use in multi-

cloud or hybrid environments.

3. No Real-time Deployment Integration

While the system visualizes and maps

cloud services, it does not provision

infrastructure or validate against live

environments. This makes it less useful

when used in production deployment

pipelines unless combined with

Infrastructure-as-Code tools.

267

4. Dependency on Code Structure

Extremely obfuscated, modular, or out-of-

the-ordinary code patterns can result in

incorrect service detection. Without

compliance with common patterns (e.g.,

dynamic import, wrapper functions), either

the rule parser will fail or generate partial

results.

5. Not Appropriate for Complex

Architectures

While effective in small- to medium-scale

automation operations, the system may not

be able to deal with large-scale, distributed

systems with many event sources,

asynchronous streams, or microservice

communication without deeper logic

modeling or orchestration context.

6. No Estimation of Cost or Security

Analysis

The tool produces a working architecture

diagram but does not estimate the cost of

running these services or run

security/compliance scans. Both of these

are enterprise-level cloud application

requirements.

7. Requires Frequent Rule Changes

Whenever AWS adds a new service or

alters SDK behavior, the rule engine of the

system has to be updated manually to

accommodate those changes, which

creates a maintenance overhead in the long

run.

VI. CONCLUSION

Experimental result of the suggested

system validates its capability to analyze

Python serverless and automation scripts

for AWS accurately and generate

corresponding architectural flowcharts

describing cloud service interactions. The

system effectively utilizes static code

analysis using Python's AST module and

rule-based mapping engine to detect

service-specific SDK patterns such as

boto3.client('s3'), sns.publish(), and

lambda_handler functions. In the process

of analysis, it generates real-time

flowcharts using Mermaid.js graphically

illustrating the sequence of services, e.g.,

the Lambda → S3 → SNS, enabling users

to directly understand application logic

and cloud service flow. Experiments on

several sample scripts demonstrated high

accuracy in service detection and correct

visualization, well aligning with known

architectural intent in the scripts, with

performance metrics indicating near-

instantaneous processing due to

lightweight semantic parsing. The tool

eliminates manual overhead, lowers the

barrier for cloud newbies to join, and

accelerates architecture design by offering

a code-to-cloud visualization pipeline.

Limitations were, however, observed in

268

processing dynamic configurations, multi-

cloud logic, and complex modular scripts,

and the tool does not support deployment

and cost/security integration yet.

Nevertheless, the results strongly validate

the feasibility of intelligent code-driven

cloud architecture mapping, a first-step

step toward automated, developer-friendly

cloud infrastructure design.

REFERENCES

[1] Mukherjee, A., Albarghouthi, A., &

Reps, T. (2020). Learning to infer

Boto3 types. Proceedings of the ACM

SIGPLAN International Conference on

PLDI.

[2] Aviv, A. J., Flores, M., &

Swaminathan, A. (2023). Infrastructure

from code: Paradigm shift for cloud-

native development. IEEE Cloud

Computing, 10(1), 56–64.

[3] Han, Y., Gorton, I., Greenfield, P., &

Jiang, L. (2014). Automated cloud

service selection and application

deployment. Future Generation

Computer Systems, 32, 190–200.

[4] Almorsy, M., Grundy, J., & Ibrahim, A.

S. (2016). Cloud security management

framework supporting cloud service

selection and deployment. Journal of

Systems and Software, 116, 49–64.

[5] Chiari, M., De Pascalis, M., &Pradella,

M. (2022). Static analysis of

Infrastructure as Code: A survey. arXiv

preprint.

[6] Cerny, T., & Taibi, D. (2022). Static

analysis tools in the era of cloud-native

systems. arXiv preprint.

[7] Sharma, T., Kechagia, M., Georgiou,

S., Tiwari, R., Vats, I., Moazen, H., &

Sarro, F. (2021). A survey on machine

learning techniques for source code

analysis. arXiv preprint.

[8] Prana, G. A., Sharma, A., Shar, L. K.,

Foo, D., & Santosa, A. E. (2021).

Embedded component analysis in

software composition. Empirical

Software Engineering.

[9] CLS (Cloud Robotics Survey Group).

(2015). A survey of cloud robotics and

automation. Technical Report, UC

Berkeley.

[10] Rahman, A., et al. (2018). Systematic

mapping study of Infrastructure as

Code research. Journal of Systems and

Software.

[11] Manner, J. (2023). A structured

literature review approach to define

serverless computing and Function-as-

a Service. Conference Proceedings.

[12] Opdebeeck, R., Zerouali, A., & De

Roover, C. (2023). Security smell

detection in IaC via control-and-data

flow. Conference Paper.

[13] Smart Scan Research Collaboration.

(2025). Smart Scan: AI-powered code

analysis and review. IJERT Journal.

269

[14] Wichmann, B. A., Canning, A. A.,

Clutterbuck, D. L., &Winsbarrow, L.

A. (1995). Industrial perspectives on

static analysis. Software Engineering

Journal.

[15] Logozzo, F., & Ball, T. (2012).

Modular and verified automatic

program repair. ACM SIGPLAN

Notices.

[16] Egele, M., Scholte, T., Kirda, E., &

Kruegel, C. (2008). A survey on

automated dynamic malware analysis.

ACM Computing Surveys.

[17] Bass, L., Weber, I., & Zhu, L. (2015).

DevOps: A software architect's

perspective. Addison Wesley.

[18] Jabbari, R., Ali, N., Petersen, K., &

Tanveer, B. (2016). What is DevOps?

A mapping study on definitions and

practices. ACM Proceedings.

[19] Kortum, P., & Bouvet, E. (2021). CI

and code quality in cloud native

environments. International Journal of

Performability Engineering.

[20] Soldani, J., &Brogi, A. (2021).

Anomaly detection in microservice

based cloud applications: A survey.

arXiv preprint.

[21] Amazon Q Developer Team. (2025).

Creating architecture diagrams with

Amazon Q and MCP. AWS Blog.

[22] AWS Well Architected Team. (2023).

AWS Well Architected best practices.

AWS Architecture Center.

[23] Sturdevant, C. (2024). Understanding

virtualization sprawl and configuration

automation. Technology Review.

[24] Hava.io Team. (2023). Hava: AWS

architecture visualization tool. White

Paper.

[25] Lucidscale Documentation Team.

(2023). Visualizing AWS cloud

environments using Lucidscale. Tech

White Paper.

[26] Miro Architecture Team. (2023).

Intelligent canvas and AWS

architecture diagram tools in Miro.

Platform Documentation.

[27] Former2 Project. (2023). Former2:

Reverse-engineer CloudFormation &

Terraform templates. Project

Document.

[28] Stackery Inc. (2023). Visual serverless

architecture designer. Corporate

Overview Document.

[29] Mermaid.js Development Team.

(2023). Mermaid: Diagram generation

from text. Open-source

Documentation.

[30] AWS Documentation Team. (2023).

Boto3 SDK reference guide. Official

Documentation.

[31] HashiCorp Team. (2023). Terraform

IaC tool for infrastructure

provisioning. Product Documentation.

[32] AWS CloudFormation Team. (2023).

CloudFormation resource management

tool. Official Documentation.

270

[33] Tiwari, R., Sharma, T., & Sarro, F.

(2021). Challenges in AI-assisted code

review and language model-based

analysis. Conference Paper.

[34] Nierstrasz, O., & Dami, L. (1995).

Object-oriented software composition.

Prentice Hall.

[35] De Hoon, M. J. L., Imoto, S., Nolan, J.,

& Miyano, S. (2004). Open-source

clustering software evaluation.

Bioinformatics.

[36] Linh, N. D., Hung, P. D., & Foo, V.

(2019). Open-source software

clustering in software composition

analysis. International Conference

Proceedings.

[37] Payne, C. (2002). On the security of

open source software. Information

Systems Journal.

[38] Kaur, S. (2020). Security issues in

open source software. International

Journal of Computer Science &

Communication.

[39] Song, L., et al. (2020). Learning to

infer Boto3 client usage patterns. PLDI

Conference Extended.

[40] Goldberg Robotics Team. (2013).

Cloud robotics automation and

intelligence survey. EECS Technical

Report.

[41] Smith, J., & Liu, H. (2022). Source

code based service mapping for cloud

workflows. Journal of Cloud

Computing Research.

[42] Nguyen, T., & Wang, S. (2021). Code-

driven visualization in serverless

architectures. Workshop Proceedings.

[43] Alvarez, F., & Patel, R. (2024). Static

detection of AWS SDK patterns from

Python scripts. Software Engineering

Journal.

[44] Li, X., & Chen, Y. (2023). Semantic

rule-based engines for cloud service

inference. International Journal of

Distributed Systems.

[45] Martinez, P., & Sood, A. (2022).

Flowchart generation from code logic:

Design patterns and tools. Human

Computer Interaction Journal.

[46] O'Connor, B., & Gupta, D. (2023).

Mermaid based architecture

visualization techniques in cloud

design. Visual Computing Journal.

[47] Rezende, M., & Tan, K. (2023). IaC

from code: Pre deployment service

mapping and architecture visualization.

Cloud Engineering Conference.

[48] Das, R., & Kumar, S. (2024).

Comparative analysis of IaC reverse

engineering tools. DevOps Conference

Proceedings.

[49] Park, M., & Lee, J. (2023). Extending

code-driven cloud design to multi

cloud support. International

Conference on Cloud Engineering.

