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Abstract-With the paradigm shift of cloud 

computing, automation and serverless 

Python scripts are increasingly being 

utilized by developers to develop scalable 

and event-based applications. The process 

of transforming such scripts into a 

successful and organized cloud 

architecture is still a time-consuming, 

error-prone activity involving significant 

cloud service integration expertise. This 

study bridges the gap with the introduction 

of an automatic smart cloud architecture 

design system based on Python scripts for 

AWS-based automation.The system uses 

rule-based and semantic analysis methods 

to analyze Python code, namely to identify 

servicespecific SDK calls (e.g., 

boto3.client('s3')), function declarations, 

and event-driven code. e.g., AWS Lambda, 

Amazon S3, and Amazon SNS—and 

automatically defines a corresponding 

architectural workflow. This workflow is 

shown as an automatically created 

flowchart, which depicts the sequence of 

action and service interaction from trigger 

to execution to outcome.Our method 

ensures low-latency, accurate mappings of 

source code to infrastructure components, 

accelerating development pace and 

architectural insights. This infrastructure 

minimizes the need for advanced cloud 

expertise in initial development stages and 

enables rapid prototyping of cloud-native 

applications.  
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I. INTRODUCTION 

In the past couple of years, cloud 

computing has become the backbone of 

modern software development, enabling 

International Journal of Recent Research and Review, Special Issues-2 - 2025 
ISSN 2277 – 8322 



262 

 

developers to code elastic, event-based 

applications without worrying about 

physical infrastructure management. Of 

various paradigms, serverless computing 

has been a runaway hit because of the 

promise of automated scaling, pay-as-you-

go economics, and instant compatibility 

with cloud-native services. Programming 

languages such as Python and SDKs such 

as Boto3 have become the de facto 

standard for scripting automation 

workflows on cloud platforms, notably on 

Amazon Web Services (AWS). Although 

cloud platforms are mature, there is a huge 

issue: developers write Python scripts 

based on cloud services without any 

explicit architectural view of the services 

communicating with one another. Existing 

cloud design workflows involve manual 

configuration through console interfaces or 

deep knowledge of Infrastructure-as-Code 

(IaC) tools such as AWS CloudFormation 

or Terraform. This manual intervention not 

only makes misconfiguration more likely 

but also delays prototyping and 

automation. A survey of the literature on 

modern tools sees many tools for cloud 

cost estimation, IaC template generation, 

and resource provisioning. However, 

few—if any—systems exist that are 

capable of reading a developer's Python 

code, parsing it, and automatically 

determining the relevant cloud services 

involved and, in parallel, constructing a 

flowchart-based architectural visualization 

representing the execution pipeline. Most 

solutions are deployment-centric and not 

concerned with understanding or mapping 

infrastructure requirements directly from 

code. To address this gap, we present an 

intelligent system capable of parsing 

Python-based automation and serverless 

scripts and determining the exact AWS 

services involved, e.g., Lambda, S3, and 

SNS. Our system then constructs a 

flowchart-based architectural visualization, 

giving developers an immediate and clear 

idea of the infrastructure workflow their 

code implies. This approach applies visual-

first, code-first design thinking to cloud 

architecture, making it easier for less 

skilled developers to enter and increasing 

productivity for cloud experts. The system 

consists of a rule-based, semantic engine 

to analyze cloud-relevant patterns in 

Python source code, a service 

classification system to map code snippets 

to AWS services, and a dynamic 

visualization module to construct 

flowcharts illustrating cloud processes 

from trigger to output. The article also 

touches on scalability, limitations, and 

possible extension to cross-cloud 

compatibility or AI-based design 

suggestion. Closing the source code to 

cloud architecture design gap, this work 

introduces new methodology to enable 
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more automated, visual, and developer-

centric cloud engineering processes 

II. REVIEW OF PAST WORK 

The last decade has seen the advent of 

cloud computing trigger intense research 

in serverless computing, infrastructure 

automation, and cloud service 

orchestration. Various works explored 

models for cloud service selection based 

on Quality-of-Service (QoS) features, cost, 

and performance characteristics. Although 

these models, e.g., Almorsy et al. and Han 

et al., are helpful for service comparison 

and selection, they also take user-provided 

input and cannot independently extract 

service requirements from the application 

source code. Likewise, Infrastructure-as-

Code (IaC) tools such as AWS 

CloudFormation, Terraform, and Pulumi 

have gained popularity for infrastructure 

automation, with various works 

highlighting their advantages in 

repeatability and scalability. However, 

most of the provided solutions are actually 

geared towards explicit, manual definition 

of resources and not automatic inference or 

visualization from textual code. Reverse 

engineering tools like Former2 and 

Stackery try to create templates or 

diagrams but are hindered by the 

requirement of already deployed 

environments or manual setup and hence 

limit their applicability for pre-deployment 

planning. Last but not least, although static 

code analyzers and semantic interpreters 

have been utilized for security 

vulnerability identification, dependencies, 

or compliance vulnerabilities in cloud 

codebases, these tools neither trace the 

actually consumed cloud services nor 

provide any architectural overview. In the 

serverless context, various works discuss 

the advantages and disadvantages of AWS 

Lambda, event-driven computing, and 

SDK usage such as Boto3 for 

programmatic manipulation, but none of 

them introduce techniques for extracting 

architectural intent from scripts employing 

these SDKs. Given the large corpus of 

publications describing how to deploy on 

clouds and automate approaches, there 

remains a gap: no existing methodologies 

successfully translate Python-scripted 

automation or serverless scripts into an 

end-to-end AWS architecture flowchart. 

This deficiency relates to the innovation 

and necessity of the system to be proposed 

to reason about developer code, recognize 

relevant AWS services, and present their 

relationships—ultimately making cloud 

architecture design from the code itself. 

III. WORK FLOW USED 

The objective of this work is to design an 

intelligent system that can analyze Python-

based automation and serverless scripts to 

identify relevant AWS cloud services and 
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design a comprehensive architectural 

flowchart. The methodology followed in 

this work is divided into four key phases: 

data collection and preprocessing, script 

analysis and pattern identification, cloud 

service categorization, and architecture 

flowchart design. 

Data collection and preprocessing is the 

first step, where Python scripts with 

automation logic are entered by the user or 

gathered. The scripts can include AWS 

SDK (boto3) calls, lambda function 

declarations, and event-driven patterns. 

For standard input and fewer parsing 

errors, the scripts go through a light 

preprocessing process where comments are 

removed, whitespace normalized, and code 

tokenized with the Abstract Syntax Tree 

(AST) and tokenize libraries in Python. 

This provides syntactic cleanliness and 

allows further semantic analysis. 

The second stage is script pattern matching 

and analysis. In this stage, the system uses 

a rule-based engine with additional pattern 

matching and semantic parsing 

components. The AST of the script is 

traversed to identify method calls, function 

declarations, and imported libraries. Extra 

caution is taken to identify service-related 

calls such as boto3.client('s3'), 

sns.publish(), and lambda handler 

functions. These patterns are compared 

against a pre-defined knowledge base 

mapping code expressions to AWS 

services. This stage also includes event 

detection—detection of when services are 

being invoked (e.g., by an API call, user 

upload, or schedule event), which aids in 

determining the flow direction and point of 

origin of the architecture. 

In step 3, cloud services are classified. 

After a possible service is found, it's 

mapped to its AWS equivalent by a rule-

engine-based or a light-weight machine 

learning-based classification layer, which 

is trained on labeled script-service pairs. 

For example, if a script contains file-

uploading code with put_object, it is 

tagged with Amazon S3. If it contains 

lambda_handler, it is tagged as an AWS 

Lambda function. In the same way, an 

occurrence of sns.publish() indicates using 

Amazon SNS. This step produces a list of 

cloud services being invoked, along with 

their order of invocation and dependencies. 

The final step is architecture flowchart 

generation. The system generates a 

directed graph from the service mapping 

output, representing the end-to-end cloud 

workflow. The graph nodes are linked to 

the cloud services (e.g., Lambda, S3, 

SNS), and edges represent the order of 

execution or data flow. The system 

generates the flowchart dynamically in 

Mermaid.js syntax, which can be 

embedded or exported. For example, a 



265 

 

Lambda function writing to S3 and 

pushing to SNS was an end-to-end 

sequential process: Lambda → S3 → SNS 

→ Subscriber. The flowchart is an easy 

way for developers to visualize their 

application's cloud architecture at a glance 

without needing to draw it themselves. 

This end-to-end solution allows developers 

and researchers to easily toggle between 

code and visualization of the cloud 

infrastructure. The solution is very 

extensible and moving it to other cloud 

providers (e.g., Azure, GCP) or more 

complete AI-based inference using 

transformer models trained on IaC 

templates and automation scripts is easy. 

Python 3.11, ast, re, and boto3 libraries 

were utilized for parsing and Mermaid for 

visualization for all the experiments.

Figure 1: AI-Driven AWS Cloud Architecture 

IV. ADVANTAGES 

1. Code-to-Cloud Automation 

The system's primary advantage is that it 

automatically converts Python serverless 

or automation code into cloud architecture. 

It bridges the gap between infrastructure 

design and software logic so that 

developers get to view the cloud 

implications of what they are writing 

without the need to translate it manually. 

2. Time Efficiency and Rapid Prototyping 

By eliminating the need to provision AWS 

services by hand or to draw architecture 

diagrams, developers can get from concept 

to launch much more rapidly. This 

facilitates rapid prototyping, especially in 

agile and DevOps environments, where 

iteration speed matters. 

3. Lower Learning Curve 
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Less experienced AWS developers or 

novice developers find it difficult to 

choose the correct services and 

comprehend how they are related. This 

model hides such complexity and offers a 

visual, intuitive model, simplifying cloud-

native development. 

4. Clarity with Visuals Through 

Flowcharts 

The use of flowcharts offers visual 

readability, enabling users to understand 

service relationships, triggers, and data 

flows better. Visualizations are beneficial 

in documentation, training new team 

members, and architecture walkthroughs in 

team meetings. 

5. Early identification of unused or 

misused services 

With detection of expected AWS services 

from code, the system can determine when 

services have been used or left out in error. 

The early feedback loop eradicates 

configuration errors and deployment 

failures. 

6. Modular and Extensible 

The rule-based architecture simplifies its 

extension to other cloud platforms (e.g., 

Google Cloud or Microsoft Azure), or 

even coupled with more sophisticated NLP 

or ML-based engines for better prediction 

accuracy. 

7. Pre-deployment Analysis 

Compared to post-deployment 

infrastructure analysis tools, the system 

runs pre-deployment, offering early 

architectural insight prior to code being 

deployed in the cloud, enhancing costing 

and planning. 

V. DISADVANTAGES 

1. Limited to Static Analysis 

The current release relies most heavily on 

static code checking against Python's 

Abstract Syntax Tree (AST). This means 

that it might lack dynamic calls to services 

or run-time settings made via environment 

variables or condition code. 

2. AWS-Centric Strategy 

The system is therefore AWS-specific and 

depends on the boto3 library being 

employed. It will not detect services from 

the other cloud providers or other SDKs 

and is therefore limited in its use in multi-

cloud or hybrid environments. 

3. No Real-time Deployment Integration 

While the system visualizes and maps 

cloud services, it does not provision 

infrastructure or validate against live 

environments. This makes it less useful 

when used in production deployment 

pipelines unless combined with 

Infrastructure-as-Code tools. 
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4. Dependency on Code Structure 

Extremely obfuscated, modular, or out-of-

the-ordinary code patterns can result in 

incorrect service detection. Without 

compliance with common patterns (e.g., 

dynamic import, wrapper functions), either 

the rule parser will fail or generate partial 

results. 

5. Not Appropriate for Complex 

Architectures 

While effective in small- to medium-scale 

automation operations, the system may not 

be able to deal with large-scale, distributed 

systems with many event sources, 

asynchronous streams, or microservice 

communication without deeper logic 

modeling or orchestration context. 

6. No Estimation of Cost or Security 

Analysis 

The tool produces a working architecture 

diagram but does not estimate the cost of 

running these services or run 

security/compliance scans. Both of these 

are enterprise-level cloud application 

requirements. 

7. Requires Frequent Rule Changes 

Whenever AWS adds a new service or 

alters SDK behavior, the rule engine of the 

system has to be updated manually to 

accommodate those changes, which 

creates a maintenance overhead in the long 

run. 

VI. CONCLUSION 

Experimental result of the suggested 

system validates its capability to analyze 

Python serverless and automation scripts 

for AWS accurately and generate 

corresponding architectural flowcharts 

describing cloud service interactions. The 

system effectively utilizes static code 

analysis using Python's AST module and 

rule-based mapping engine to detect 

service-specific SDK patterns such as 

boto3.client('s3'), sns.publish(), and 

lambda_handler functions. In the process 

of analysis, it generates real-time 

flowcharts using Mermaid.js graphically 

illustrating the sequence of services, e.g., 

the Lambda → S3 → SNS, enabling users 

to directly understand application logic 

and cloud service flow. Experiments on 

several sample scripts demonstrated high 

accuracy in service detection and correct 

visualization, well aligning with known 

architectural intent in the scripts, with 

performance metrics indicating near-

instantaneous processing due to 

lightweight semantic parsing. The tool 

eliminates manual overhead, lowers the 

barrier for cloud newbies to join, and 

accelerates architecture design by offering 

a code-to-cloud visualization pipeline. 

Limitations were, however, observed in 
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processing dynamic configurations, multi-

cloud logic, and complex modular scripts, 

and the tool does not support deployment 

and cost/security integration yet. 

Nevertheless, the results strongly validate 

the feasibility of intelligent code-driven 

cloud architecture mapping, a first-step 

step toward automated, developer-friendly 

cloud infrastructure design. 
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