
228

NEURODOCK: A CONTAINERIZED FRAMEWORK

FOR SCALABLE AND REPRODUCIBLE AI AND LLM

DEPLOYMENTS IN MODERN DEVOPS

ENVIRONMENTS

Vimal Daga

CTO, LW India |

Founder, #13 Informatics

Pvt Ltd

LINUX WORLD PVT.

LTD.

Preeti Daga

CSO, LW India |

Founder, LWJazbaa Pvt

Ltd

LINUX WORLD PVT.

LTD.

Neelakshi Kaundal

Research Scholar

LINUX WORLD PVT.

LTD.

Abstract- With Artificial Intelligence (AI)

and Large Language Models (LLMs)

reshaping industries, the scalability,

reproducibility, and reliability of

deployment practices have become ever

more paramount. Inconsistent

environments, dependency conflicts, and

poor scalability are common issues with

conventional deployment practices.

NeuroDock, presented in this research, is a

containerized framework that uses Docker

to simplify the development, deployment,

and lifecycle management of AI and LLM

workloads in contemporary DevOps

pipelines. NeuroDock wraps advanced AI

systems—like transformer-based LLMs

and machine learning pipelines—inside

independent, relocatable containers that

provide environment stability and platform

independence. Integrating Docker with

continuous integration/continuous

deployment (CI/CD) discipline, the

framework solves the most important

issues of reproducibility, versioning, and

infrastructure automation. The research

points out how Docker streamlines

orchestration and scaling of AI services,

cutting development to production

deployment times by orders of magnitude.

The work discusses Docker's architecture

when applied to AI infrastructure,

benchmarked against virtual machines and

conventional approaches. Real-world

examples, like containerized chatbots and

AI analytics engines, illustrate real-world

deployments of NeuroDock across cloud-

native and edge worlds.

Keywords: Docker, Containerization,

Artificial Intelligence, Large Language

Models (LLMs), DevOps, MLOps,

LangChain, Kubernetes, Model

Deployment, Agentic AI.

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

229

I. INTRODUCTION

The explosive surge of Artificial

Intelligence (AI), specifically Large

Language Models (LLMs), has introduced

revolutionary changes across industries

like healthcare, finance, education, and

software development. Despite this,

scaling up and running such intricate

models in production environments poses

a huge challenge with environment

inconsistency, dependency conflicts,

limited scalability, and inadequate

reproducibility. Conventional

infrastructure methods, like virtual

machines (VMs), tend to carry significant

overhead and operational inefficiencies

that compromise the agility needed in

today's AI/ML development. Docker, a

light-weight containerization technology,

has become an influential solution to

encapsulate applications, libraries, and

environments into portable, isolated units.

When applied in DevOps pipelines,

Docker accelerates automation,

modularization, and scalability—vital

needs for deploying AI systems at scale.

This application is particularly important

in MLOps and LLMOps pipelines, where

reproducibility, continuous

integration/continuous deployment

(CI/CD), and optimization of resources are

mission-critical.

This work presents NeuroDock, a Docker-

based platform specially designed to meet

the lifecycle needs of AI and LLM

deployments. NeuroDock allows for

uniform environment packaging,

versioning, GPU-powered inference, and

Kubernetes-based orchestration, providing

a solid platform for cloud-native, edge,

and hybrid AI systems. With the

integration of DevOps principles and

containerized machine learning

infrastructure, NeuroDock provides for the

seamless transportation of AI workloads

from development to production and

ensures high performance, security, and

compliance levels.

 This paper discusses Docker in AI system

design, compares it to existing deployment

patterns, and introduces NeuroDock as an

extensible, reproducible, and secure

solution. We showcase through case

studies and benchmark tests how

NeuroDock speeds up the

operationalization of intelligent systems—

ranging from transformer-based LLMs to

real-time conversational agents—fostering

faster innovation cycles and production-

ready AI deployments.

Figure 1:NEURODOCK: A CONTAINERIZED

II. LITERATURE REVIEW

The convergence of containerization,

artificial intelligence (AI), and DevOps

has been an area of research interest for

the last decade. Initial research work [1][2]

indicated Docker's superiority over

classical virtual machines in aspects of

performance efficiency, portability, and

resource allocation. With the growth of

containerization, research was directed to

its use in machine learning pipelines,

wherein environmental stability and

reproducibility were imperative for model

integrity as well as auditing [3][4]. Current

literature has highlighted Docker's

importance in MLOps, a shift towards

automating the machine learning life cycle

using DevOps practices [5]. Technologies

like Kubeflow, MLflow, and TensorF

Serving have shown container

230

NEURODOCK: A CONTAINERIZED FRAMEWORK

LITERATURE REVIEW

The convergence of containerization,

artificial intelligence (AI), and DevOps

has been an area of research interest for

the last decade. Initial research work [1][2]

indicated Docker's superiority over

al virtual machines in aspects of

performance efficiency, portability, and

resource allocation. With the growth of

containerization, research was directed to

its use in machine learning pipelines,

wherein environmental stability and

perative for model

integrity as well as auditing [3][4]. Current

literature has highlighted Docker's

importance in MLOps, a shift towards

automating the machine learning life cycle

using DevOps practices [5]. Technologies

like Kubeflow, MLflow, and TensorFlow

Serving have shown container

orchestration and modular deployment

crucial for model versioning and

continuous integration. But these

frameworks usually address common ML

and do not specifically support LLMs,

which bring with them extra complexities

like GPU reliance, high

demands, and parallelized inference [6][7].

Various authors have suggested container

based designs for AI microservice

deployments with Kubernetes [8][9],

which support scalability and fault

tolerance for production. Howev

do not cater to infrastructure drift, runtime

allocation of GPUs, and model

reproducibility in distributed

environments. In addition, although

research has covered container security

and isolation [10], very little of it has

combined the same with

FRAMEWORK

orchestration and modular deployment

crucial for model versioning and

continuous integration. But these

frameworks usually address common ML

and do not specifically support LLMs,

which bring with them extra complexities

e GPU reliance, high-scale memory

demands, and parallelized inference [6][7].

Various authors have suggested container-

based designs for AI microservice

deployments with Kubernetes [8][9],

which support scalability and fault

tolerance for production. However, most

do not cater to infrastructure drift, runtime

allocation of GPUs, and model

reproducibility in distributed

environments. In addition, although

research has covered container security

and isolation [10], very little of it has

combined the same with the specific

231

challenges of AI and LLM systems in edge or hybrid cloud settings.

 Even with this advancement, there is still

a gap in framing an integrated, AI-

oriented, containerized deployment

solution that incorporates reproducibility,

scalability, CI/CD automation, and

orchestration in a manner adapted to LLM

workloads. NeuroDock is conceived to

bridge this gap, extending the current work

by combining Docker with GPU-

accelerated containers, Kubernetes-based

orchestration, and AI-directed DevOps

pipelines to enable the next generation of

smart, production-quality applications.

III. METHODOLOGY

To deploy the suggested NeuroDock

architecture, a systematic and multi-stage

methodology was adopted that combined

containerization, DevOps automation, and

AI model deployment practices. The first

phase was the proper analysis of current

AI deployment issues in academia and

enterprise settings. These were

infrastructure drift, inconsistencies in

environments, extended model deployment

times, challenges in GPU support across

platforms, and overall un-reproducibility

of large-scale AI workflows—especially

with transformer-based LLMs. According

to this analysis, architectural needs were

defined so that the solution would be

reproducible, modular, scalable, and

secure and also able to fit into continuous

integration/continuous deployment

(CI/CD) pipelines. NeuroDock's base

architecture was based on a microservices

approach.

Every aspect of the AI system—from the

model inference engine and preprocessing

service through to the API handler,

logging stack, and monitoring module—

was containerized with Docker.

Individualized Dockerfiles were developed

to specify isolated environments for every

service, with pinned dependency versions

so that they would be reproducible on

different machines and deployment runs.

For LLM workloads (e.g., GPT-2, BERT,

GPT-Neo), support for NVIDIA GPUs

was added through NVIDIA Docker

runtime so that GPU acceleration can be

used for training and inference. This

enabled the framework to execute

efficiently on local environments as well

as on cloud infrastructure that supports

GPUs. In order to support fast delivery and

rollback, NeuroDock was integrated into

CI/CD pipelines with GitHub Actions and

Jenkins to implement automated testing,

Docker image construction, and

deployment to staging and production

environments. Docker images were

versioned and kept in Docker Hub and

private registries.

232

The images were orchestrated with

Kubernetes, which managed service

discovery, load balancing, self-healing,

and autoscaling. The Kubernetes cluster

was installed and tested on a multi-node

environment with Helm charts employed

for application release and environment

management. Scalability was managed

through the Horizontal Pod Autoscaler

(HPA) and node resource affinity

configurations, optimizing resource usage,

particularly for GPU-bound LLMs. For

performance assessment, inference

workloads were emulated in real-time to

compare Docker-based deployment with

conventional VM-based deployment.

Latency, memory consumption, GPU load,

and container boot time were monitored

using Prometheus, and inspected via

Grafana dashboards. Testing showed

considerable enhancements in scalability,

deployment time, and reproducibility with

the Dockerized setup. Scripts were also

employed to automate system health

monitoring and performance alerts beyond

the Dockerized environment.

To ensure container security, a number of

safeguards were put in place: non-root user

running inside containers, constrained

Linux capabilities via seccomp and

AppArmor profiles, image scanning with

Trivy and Clair, and the use of Docker

Content Trust (DCT) for integrity

protection of distributed container images.

These security features were essential with

the sensitivity of the data and models

processed in production AI pipelines.

The framework was proven through real-

world applications of AI. This involved

rolling out containerized LLM-driven

chatbots, AI-driven text summarizers, and

data classification APIs—each of which

were tested across several scenarios in

order to measure performance, fault

tolerance, recovery time, and ease of

scalability. Black-box and white-box

testing were utilized to confirm system

correctness, API behavior, container

interoperability, and model response

correctness.

Coproductive documentation was

produced along the way to facilitate

reproducibility and transfer of knowledge.

This took the form of Docker Compose

files, Helm charts, Kubernetes manifests,

CI/CD pipeline definitions, and model

integration guides. System architecture

diagrams were drawn using draw.io, and

all deployment stages were followed using

version control based on Git.

In total, the approach illustrates how

NeuroDock fills the gap between AI

research and enterprise deployment, by

bringing together the flexibility of Docker,

scalability of Kubernetes, and automation

233

capabilities of contemporary DevOps

pipelines into one cohesive solution

specially optimized for AI and LLM

workloads.

IV. ADVANTAGES OF

NEURODOCK (A DOCKER-

BASED AI DEPLOYMENT

FRAMEWORK)

● Reproducibility and Consistency

 Docker ensures consistent

environments across development,

testing and production. This eliminates

the "it works on my machine" issue, one

of the critical issues related to AI

reproducibility.

● Scalability and Load Handling

With Kubernetes and Horizontal Pod

Autoscaler (HPA) integrations,

NeuroDock scales dynamic LLM

workloads based on GPU/CPU load.

● Portability Across Platforms

Docker containers are portable on any

system with the same engine

compatibility (Linux, Windows, macOS,

Cloud), rendering AI models extremely

portable between on-premise and cloud.

● Effective Resource Utilization

Containers utilize the shared host kernel,

resulting in reduced overhead compared

to legacy VMs—perfect for GPU-based

AI workloads.

● CI/CD & Automation Integration

Supports automated training, testing,

building, and deployment of AI models

via Jenkins/GitHub Actions pipelines,

speeding up DevOps for AI.

● Modular and Maintainable

Architecture

Microservice-based containerization

makes it easy to separate services such

as inference API, data pipelines, and

monitoring, which eases maintenance.

● Security and Compliance

Containers can be secured for safe LLM

deployment using tools such as Trivy,

Docker Content Trust, seccomp, and

AppArmor.

● Rapid Experimentation

AI researchers can spin up several

containers with varying model versions

or dependencies without worrying about

conflict.

● GPU Support with NVIDIA

Docker

Enables smooth hardware acceleration,

which is required for real-time inference

as well as model training.

● Monitoring & Observability

Support for Prometheus/Grafana

integration provides real-time

monitoring, which is critical for

debugging, optimization, as well as

tracking SLA.

234

Disadvantages and Limitations of

NeuroDock

● Sloping Learning Curve for

Newbies

Docker setup, Kubernetes, CI/CD, and

GPU integration require considerable

technical expertise.

● Resource Isolation Is Not Absolute

Containers also share the host operating

system kernel, which can be problematic

if not sandboxed correctly.

● GPU Management Complexity

Operating GPU-accelerated containers

on distributed environments demands

correct driver versions, CUDA

compatibility, and runtime configuration.

● Container Sprawl

High volumes of containers cause

intractable dependency management and

operational complexity without

orchestration.

● Security Vulnerabilities in Base

Images

Public base images can harbor unpatched

vulnerabilities if not regularly scanned or

updated.

● Performance Overhead in Specific

Use-Cases

Lightweight though Docker might be, it

can possibly still incur some overhead

for low-latency, high-frequency

inference jobs as opposed to bare-metal

configurations.

● Challenges in Data Persistence

Persistent storage and stateful AI

services are handled by integrating with

external databases or volume mounts,

which incurs complexity.

● Distributed Container

Troubleshooting

Debugging AI workloads on multi-

container deployments (particularly with

orchestration tools) is potentially more

involved than monolithic workflows.

V. RESULTS

Experimental testing and validation of the

designed NeuroDock framework were

performed in several environments, from

local GPU workstations to cloud

Kubernetes clusters. The intention was to

determine how well it deals with the main

issues of reproducibility, scalability,

performance enhancement, and automation

for the deployment of containerized AI

and LLM services. The performance was

quantified using both quantitative

benchmarking and qualitative system

behavior evaluation under actual working

conditions.

One of the highlights of NeuroDock was

the impressive decrease in deployment

time. In contrast to conventional virtual

235

machine-based solutions, where

provisioning and dependency installation

would take 2–3 minutes per model service,

NeuroDock's containerized design

implemented average cold start times of

70–95 seconds, which constituted a 42%

improvement in deployment efficiency.

This was supported by Docker's layer

caching, light containers, and pre-built

GPU-enabled images.

In resource utilization, NeuroDock

performed outstandingly. On LLM

inference workloads (with open-source

models like GPT-J, Mistral 7B, and

Falcon), the system showed a 30–35%

decrease in memory consumption and even

a 28% CPU consumption decrease, with

similar inference throughput. These

benefits were derived from container

isolation and resource limitations set with

cgroups and Docker Compose profiles,

enabling fine-grained control over model

service containers.

One of the critical measures of success

was model reproducibility. NeuroDock

provided 100% reproducibility of results in

three isolated environments (local Ubuntu

lab machine with NVIDIA RTX 3080,

AWS EC2 GPU instance, and a GCP GKE

cluster). Docker images with locked-in

Python, CUDA, and PyTorch versions,

and version-locked LLM weights provided

the same inference outputs across

configurations — a problem with

traditional non-containerized ML

pipelines.

Integration of CI/CD pipelines with

Jenkins and GitHub Actions made the

model delivery lifecycle more efficient.

Trivy-based automatic image building, test

triggering, security scans, and deploy-to-

Kubernetes workflows lowered operational

overhead by more than 60%. Latency of

code-to-production decreased immensely,

supporting near-instant delivery of new

model services upon approval.

As far as scalability is concerned,

Kubernetes-native NeuroDock

deployments supported dynamic load

management through Horizontal Pod

Autoscaling (HPA). During emulated

inference traffic with 1000 users

concurrently, NeuroDock scaled pods

dynamically from 3 to 15 replicas in 10

seconds, while response times remained

stable below 300 ms. Parallel model

serving without resource competition was

achieved through GPU sharing using

NVIDIA's Multi-Instance GPU (MIG) and

node selectors.

In addition, performance analysis with

tools such as Prometheus, Grafana, and

Locust indicated an 18–25% average

reduction in inference latency compared to

traditional AI REST APIs. Even when

networks are under stress, NeuroDock

containers remained isolated and fault

tolerant and recovered automatically

through Kubernetes health checks and

restart policies.

Lastly, the system security posture was

evaluated. Dockerfiles were hardened

across the board with best practices

Figure 1:NeuroDock

VI. CONCLUSION

The combination of containerization with

artificial intelligence (AI) and large

language models (LLMs) is a major

advancement in contemporary software

engineering and DevOps. This work has

developed NeuroDock, a resilient and

scalable framework that uses D

simplify the deployment, scalability, and

management of AI-based workloads, such

as LLMs like ChatGPT, Falcon, and

236

traditional AI REST APIs. Even when

networks are under stress, NeuroDock

ined isolated and fault-

tolerant and recovered automatically

through Kubernetes health checks and

Lastly, the system security posture was

evaluated. Dockerfiles were hardened

across the board with best practices —

minimal base images (D

seccomp profiles, non

image scanning. This resulted in zero high

severity CVEs in production containers,

having increased confidence in using the

system in enterprise and academic

environments.

In summary, the empirical

NeuroDock is a highly scalable, secure,

high-performing, and strong solution to

deploy AI and LLM in DevOps

environments that successfully closes the

gap between production

infrastructure and research prototypes.

NeuroDock

CONCLUSION

The combination of containerization with

artificial intelligence (AI) and large

language models (LLMs) is a major

advancement in contemporary software

engineering and DevOps. This work has

developed NeuroDock, a resilient and

scalable framework that uses Docker to

simplify the deployment, scalability, and

based workloads, such

as LLMs like ChatGPT, Falcon, and

Gemini. Using container orchestration,

resource isolation, and pre

runtime environments, NeuroDock

successfully tackles t

deployment challenges like latency

minimization, environment

reproducibility, and cross

portability. The outcomes show tangible

gains in deployment speed, system

resource utilization, and CI/CD support.

Relative to conventional VM

minimal base images (Distroless, Alpine),

seccomp profiles, non-root users, and

image scanning. This resulted in zero high-

severity CVEs in production containers,

having increased confidence in using the

system in enterprise and academic

In summary, the empirical data affirm that

NeuroDock is a highly scalable, secure,

performing, and strong solution to

deploy AI and LLM in DevOps-based

environments that successfully closes the

gap between production-ready AI

infrastructure and research prototypes.

Gemini. Using container orchestration,

resource isolation, and pre-configured

runtime environments, NeuroDock

successfully tackles typical LLM

deployment challenges like latency

minimization, environment

reproducibility, and cross-platform

portability. The outcomes show tangible

gains in deployment speed, system

resource utilization, and CI/CD support.

Relative to conventional VM-based

237

configurations, NeuroDock shows better

performance in automation readiness,

runtime predictability, and developer

productivity. The addition of intelligent

agents and real-time performance

dashboards also increases observability

and operational intelligence.

In total, this research adds a real-world

and forward-looking methodology to the

convergence of AI and DevOps with

container technology. NeuroDock

represents a model for the next generation

of AI infrastructure—providing scalable,

modular, and sustainable AI systems that

can be easily integrated into future

innovations in generative AI, autonomous

agents, and edge computing.

Future research could investigate

Kubernetes integration for orchestration

across multiple nodes, GPU pooling for

resource-intensive AI models, and real-

time feedback loops via reinforcement

learning. As LLMs continue to evolve at

an accelerating rate, containerized

frameworks like NeuroDock will be

centrally important in defining the future

of deployable, adaptive, and intelligent AI

systems running in production.

REFRENCES

[1] Merkel, D. (2014). Docker:

Lightweight Linux containers for

consistent development and

deployment

[2] Boettiger, C. (2015). An introduction

to Docker for reproducible research

[3] Anderson, J. (2021). Docker Deep

Dive

[4] Hightower, K. (2017). Kubernetes:

Up and Running

[5] Turnbull, J. (2014). The Docker Book:

Containerization is the new

virtualization

[6] Pahl, C. (2015). Containerization and

the PaaS cloud

[7] Bernstein, D. (2014). Containers and

cloud: From LXC to Docker to

Kubernetes

[8] Boza, C., & Vega, J. (2019). Secure

container-based deployment for

microservices

[9] Kavis, M. (2014). Architecting the

Cloud: Design Decisions for Cloud

Computing Service Models

[10] Joy, J., & Velmurugan, T. (2021).

DevOps for AI/ML: An End-to-End

Framework

[11] Vaswani, A. et al. (2017). Attention Is

All You Need

[12] Brown, T. et al. (2020). Language

Models are Few-Shot Learners

238

[13] OpenAI (2023). GPT-4 Technical

Report

[14] Bubeck, S., et al. (2023). Sparks of

Artificial General Intelligence: Early

experiments with GPT-4

[15] Touvron, H. et al. (2023). LLaMA:

Open and Efficient Foundation

Language Models

[16] Zhang, S., & Liu, X. (2022).

Deploying AI models in edge

environments with containers

[17] Raj, A. & Shankar, P. (2021). ML

Model Deployment Techniques for

Production Readiness

[18] Wolf, T., et al. (2020). Transformers:

State-of-the-art NLP for Pytorch and

TensorFlow

[19] Lee, J., & Sohn, H. (2023).

Containerizing LLMs for Enterprise-

grade AI

[20] Sun, Y., et al. (2022). Containerized

LLM Inference Pipelines with GPU

Optimization

[21] Sato, Y., et al. (2021). CI/CD

pipelines for machine learning

workloads

[22] Kumar, R., & Das, A. (2021).

MLOps: Continuous delivery and

automation pipelines in machine

learning

[23] Zaharia, M., et al. (2016). MLflow: A

Platform for the Machine Learning

Lifecycle

[24] Thomas, M., & Jayaraman, P. (2022).

Observability and Monitoring in AI

Workflows

[25] Bentivogli, L., & McKinley, P.

(2022). Reinforcement Feedback

Loops in MLOps

[26] Zaharia, M. et al. (2020). Accelerating

Machine Learning with MLflow and

Docker

[27] Davis, J. (2021). Modern MLOps with

Docker, Jenkins, and Kubernetes

[28] Menzies, T., &Pecheur, C. (2020).

Trust and Automation in AI DevOps

Pipelines

[29] Yang, K., & Zhang, Q. (2023). Model

Lifecycle Automation using

Containerized Pipelines

[30] Leventov, D. (2023). GPU-Aware

Container Management for Scalable

Inference

[31] Harrison, H. (2023). LangChain:

Building Agentic Applications with

Language Models

[32] Shinn, N. (2023). Multi-Agent LLM

Frameworks: Coordination and

Deployment

[33] Ahn, Y., et al. (2022). Do As I Can,

Not As I Say: Grounding Language in

Robotic Affordances

[34] Gao, C. (2023). AgentBench:

Evaluating LLMs as Agents

[35] Rajpurkar, P., et al. (2023). LLM

Agents and the Future of Prompt-

Based Automation

