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Abstract- Low-latency live streaming is 

progressively important for real-time use 

cases like interactive broadcasting, e-

sports, remote collaboration, and virtual 

events. The requirement to maintain a 

consistent high frame-per-second (FPS) 

throughput while keeping latency low is a 

tough challenge, particularly when live 

streaming pipelines are run in 

containerized and orchestrated 

environments like Kubernetes. 

Conventional live streaming 

configurations usually hit bottlenecks 

because of encoding latency, network 

jitter, resource limitations in containers, 

and suboptimal pipeline configurations, all 

of which culminate in FPS drops and 

compromised viewer experience.This 

study targets FPS optimization in low-

latency live streaming pipelines with 

containerized applications orchestrated by 

Kubernetes. The research examines how 

different factors—such as container 

runtime performance (Docker vs. 

Podman), GPU hardware acceleration 

(VAAPI, NVIDIA, or Intel QuickSync), 

video codecs (H.264, H.265, AV1), and 

network settings—influence FPS 

consistency in actual conditions. We also 

investigate how Kubernetes features such 

as Horizontal Pod Autoscaling (HPA), 

Vertical Pod Autoscaling (VPA), node 

resource assignment, and network plugins 

(CNI) contribute to ensuring high FPS and 

low end-to-end latency.A rigorous 

benchmarking infrastructure is constructed 

using FFmpeg, GStreamer, and OBS 

Studio tools running within containers, 

Experiments are conducted to mimic real-

world conditions, i.e., different network 

bandwidth, packet loss, and user load, to 

test pipeline resilience. The research also 

studies the combination of WebRTC and 

SRT (Secure Reliable Transport) protocols 

with containerized streaming servers to 
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compare their performance with regular 

HLS/DASH streaming techniques. 
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I. INTRODUCTION 

The proliferation of digital communication 

technologies has significantly transformed 

the landscape of media consumption, with 

real-time, high-quality live streaming 

emerging as a core enabler across various 

domains such as e-sports, virtual events, 

online learning, remote work, and 

interactive entertainment. The global 

reliance on live video has intensified, 

making the delivery of seamless, 

responsive, and immersive streaming 

experiences more critical than ever. As 

user expectations rise, Frames Per Second 

(FPS) and latency have become two key 

performance metrics that directly influence 

the Quality of Experience (QoE) for end-

users. 

High FPS contributes to a visually smooth 

and engaging stream, which is particularly 

important in content-rich environments 

such as gaming tournaments and real-time 

simulations. On the other hand, low 

latency is imperative for enabling instant 

interaction, a non-negotiable requirement 

in applications such as video conferencing, 

cloud gaming, live auctions, and real-time 

collaboration platforms. Striking the right 

balance between maintaining high FPS and 

achieving low latency is a persistent 

engineering challenge, especially when 

scaling across geographically distributed 

users with diverse device capabilities and 

network conditions. 

In this context, containerization 

technologies like Docker and orchestration 

platforms such as Kubernetes offer 

promising solutions. They provide 

scalable, flexible, and resource-efficient 

infrastructures capable of managing 

dynamic workloads inherent in live 

streaming pipelines. Containers allow for 

modular and lightweight media processing 

units (e.g., encoders, transcoders, 

streamers), while Kubernetes ensures their 

effective deployment, scaling, and 

management across cloud-native or edge 

environments. This enables optimized 

resource allocation, parallel processing, 

and automated fault tolerance—factors 

crucial to maintaining high streaming 

performance. However, integrating 

containerized architectures into live 

streaming workflows brings its own set of 
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challenges. These include container startup 

latency, inter-container communication 

delays, resource contention, and the 

orchestration overhead that could 

potentially offset the benefits if not 

carefully optimized. Moreover, ensuring 

that media components (like encoders and 

decoders) maintain real-time constraints 

without compromising FPS remains a 

technical hurdle. 

This research investigates the optimization 

of FPS in low-latency live streaming 

pipelines by leveraging container-based 

infrastructure managed via Kubernetes. 

The objective is to develop a framework 

that intelligently manages computational 

resources, adapts to real-time workloads, 

and minimizes processing delays to 

achieve optimal streaming performance. 

By analyzing different configurations, 

scheduling strategies, and deployment 

topologies, we aim to identify bottlenecks 

and propose optimizations that enhance 

both visual fluidity (FPS) and interaction 

responsiveness (latency). This work 

contributes to the advancement of scalable, 

reliable, and interactive live streaming 

systems suitable for the next generation of 

real-time digital experiences. 

II. LITERATURE  REVIEW 

The arena of live streaming has seen 

tremendous growth in recent years, with 

researchers seeking to minimize latency, 

maximize frame rate (FPS), and enhance 

overall video quality. Conventional 

streaming structures have utilized HTTP-

oriented protocols such as HLS (HTTP 

Live Streaming) and MPEG-DASH, which 

value reliability and compatibility over 

low latency [1]. Such techniques, however, 

necessarily introduce latencies of a few 

seconds and thus are not quite appropriate 

for real-time interactive services like cloud 

gaming, e-sports streaming, and virtual 

classrooms [2]. More recent research 

emphasizes the need for low-latency 

streaming protocols like WebRTC and 

SRT (Secure Reliable Transport), which 

are created with the aim of providing sub-

second latency while having smooth FPS 

[3, 4]. 

FPS Optimization in Video Streaming 

The Frames Per Second (FPS) measure has 

a direct influence on user-perceived 

quality. The smoother the playback, the 

larger the value of FPS; however, 

sustaining or reaching 60 FPS or more is 

difficult, particularly with encoding and 

transcoding. Experiments in [5] and [6] 

prove that video codecs (H.264, 

H.265/HEVC, and AV1) have a key role in 

maintaining stability in FPS due to 

differing encoding complexities. Research 

also indicates that hardware acceleration 
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(through NVIDIA NVENC or Intel 

QuickSync) gives a significant boost to 

FPS performance over software encoding 

[7]. This research highlights the 

significance of GPU pass-through and 

Direct Rendering Infrastructure (DRI) in 

containerized environments. 

Containerization and Streaming 

Performance 

Containers are now a popular way to 

deploy streaming services because they are 

portable, isolated, and scalable. 

Nevertheless, studies show that 

containerization brings performance 

overheads related to network throughput, 

I/O performance, and CPU scheduling that 

affect FPS and latency [8, 9]. Kim et al. 

[10] and Qiao et al. [11] have indicated 

through their work that container 

networking (overlay vs. host networking) 

introduces appreciable latency to real-time 

streaming pipelines. Additionally, rootless 

containers enhance security but tend to 

have slightly lower throughput due to 

more user namespace translations [12]. 

Kubernetes-Orchestrated Streaming 

Kubernetes has proven to be a solid 

framework for scalable streaming 

architectures with its ability to horizontally 

scale media servers and perform real-time 

load balancing [13]. But the orchestration 

layer may also add delays during pod 

scheduling, cold starts, and autoscaling 

operations, causing temporary FPS loss 

[14]. Studies in [15] and [16] have 

investigated how HPA and VPA can be 

optimized for streaming workloads 

through the establishment of CPU and 

memory thresholds depending on FPS 

monitoring. Studies have also highlighted 

the need for QoS classes and node affinity 

to provide guaranteed resources to high-

priority streaming pods [17]. 

Monitoring FPS and Latency 

III. METHODOLOGY 

This work takes an experimental and data-

oriented approach to studying the 

optimization of frames per second (FPS) 

for low-latency live streaming pipelines 

running on Kubernetes. The process starts 

with the establishment of a controlled 

testing environment that replicates closely 

actual deployment scenarios in which 

streaming workloads are run. It is 

important to check how hardware 

acceleration, streaming protocols, 

configurations of container resources, and 

policies of Kubernetes orchestration affect 

FPS as well as end-to-end latency. 

The lab environment is constructed around 

a high-powered server machine under 

RHEL 9, featuring an Intel i7 or AMD 

Ryzen processor, a minimum of 16 GB of 

memory, and an NVIDIA GPU with 
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CUDA and NVENC to enable hardware-

accelerated decoding and encoding. The 

Kubernetes cluster is established via 

kubeadm or Minikube, with Docker and 

Podman containers being tested alternately 

for runtime comparison. The streaming 

pipeline has three main components: an 

ingest node utilizing OBS Studio or 

FFmpeg to capture and push a 

1080p@60FPS video stream, a GStreamer 

or FFmpeg-powered transcoding node 

with GPU passthrough, and a streaming 

server utilizing NGINX-RTMP or 

WebRTC/SRT relay for edge-to-edge 

distribution of the live feed. A viewer node 

is the client endpoint where FPS and 

latency are benchmarked under different 

scenarios. 

To monitor and compare FPS, the study 

uses software such as FFmpeg and 

GStreamer, which both present real-time 

frame processing statistics. Logs from 

OBS Studio are also used to detect frame 

drops and rendering discrepancies. To see 

performance trends in time, Prometheus 

and Grafana are used on the cluster, with 

cAdvisor giving container-level metrics 

including CPU, memory, and GPU 

utilization. Custom exporters drive FPS 

metrics into Prometheus, allowing for the 

generation of rich dashboards to monitor 

the performance of individual pipeline 

elements. 

Experiments are done under various 

scenarios to obtain a holistic performance 

profile. The study first compares 

performance in terms of FPS under varied 

streaming protocols, i.e., HLS, WebRTC, 

and SRT, to see the impact of protocol 

selection on frame delivery and latency. 

Thereafter, hardware acceleration is 

compared with software encoding to 

measure the enhancement in performance 

by NVENC and VAAPI. The strength of 

various protocols and container 

architectures under such an environment is 

tested and examined. Lastly, Kubernetes 

node affinity, Quality of Service (QoS) 

classes, and resource scheduling policies 

are experimented to determine the best 

practices for deploying stable FPS. 

The process of data collection focuses on 

both FPS stability and latency 

measurements. FPS values are logged 

continuously during streaming sessions, 

and resource consumption is monitored in 

parallel to enable correlation of 

performance with hardware and software 

configurations. Grafana-generated graphs 

and dashboards give a visual insight into 

FPS variations and resource usage 

patterns, enabling each test scenario to be 

easily compared.  
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With this approach, the study hopes to 

offer practical recommendations and best 

practices in deploying containerized live 

streaming pipelines with sustained smooth 

60 FPS or more and sub-second latency. 

By integrating protocol benchmarking, 

GPU optimization, network simulation, 

and Kubernetes tuning, the research 

devises an all-encompassing framework 

for comprehending and optimizing FPS in 

real-time streaming scenarios. 

IV. ADVANTAGES 

Together, Kubernetes and containers 

provide a variety of benefits when used in 

live streaming pipelines, especially if the 

aim is high FPS and low latency. 

Scalability is the most notable advantage. 

Kubernetes offers a strong orchestration 

platform that dynamically scales 

transcoding and streaming services 

according to demand. That translates to 

high-traffic events where more pods can be 

automatically spun up for higher workload 

coverage without sacrificing frame 

delivery or producing FPS losses. This 

elasticity maintains a predictable viewing 

experience even under fluctuating loading 

conditions. 

Kubernetes also includes strong 

monitoring and observability, something 

essential for FPS tuning. Through 

incorporation of tools such as Prometheus, 

Grafana, and cAdvisor, frame delivery 

rates, system resource levels, and network 

quality can be monitored in real-time. This 

enables frame drops or encoding 

bottlenecks to be identified early on and 

corrective action to be taken. In addition, 

protocol flexibility is an important benefit. 

Containerized environments can readily 

test low-latency protocols like WebRTC or 

SRT, which have a reputation for 

providing improved FPS consistency and 

sub-second latency over legacy HTTP-

based streaming protocols like HLS or 

DASH.  

Security and isolation are other 

advantages. Containers offer a contained 

environment where streaming applications 

are isolated from the host operating 

system, minimizing the attack surface. 

This is especially relevant with public-

facing live streaming servers. Finally, 

Kubernetes also provides inherent 

resilience with self-healing features, which 

means that if a container or pod fails while 
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streaming, it can be restarted automatically 

with minimal latency or FPS impact. 

V. DISADVANTAGES 

While containers and Kubernetes have 

numerous advantages, there are drawbacks 

and challenges when it comes to 

optimizing FPS in live streams pipelines. 

One of the main disadvantages is the 

containerization overhead. While 

containers are lightweight relative to 

virtual machines, they create some latency 

because there are some extra layers of 

networking (such as overlay networks) and 

filesystem abstraction. This can subtly 

affect the FPS, particularly when multiple 

containers are part of the encoding and 

distribution pipeline. To obtain near-native 

FPS performance in most cases requires 

sophisticated configurations, for example, 

host networking or kernel parameter 

tuning, which can be intricate. 

Another constraint is that GPU integration 

is complex. Although GPU passthrough 

generally boosts FPS so much, it is not 

easy to integrate it inside a Kubernetes 

cluster. It may demand specific device 

plugins, drivers, and security 

configurations, which can raise operational 

complexity. In total, the table verifies that 

GPU acceleration, WebRTC, and 

Kubernetes orchestration are the key to 

stable 60 FPS real-time streaming, while 

HLS is still not appropriate in ultra-low-

latency cases. 

VI. RESULTS 

The data confirms the necessity of GPU 

acceleration and low-latency transports 

such as WebRTC and SRT for real-time 

streaming at 60 FPS. CPU-only setups are 

resource-consuming and will not be able to 

sustain consistent FPS, especially under 

network load. Kubernetes orchestration 

causes temporary performance variability 

when autoscaling but ultimately improves 

overall stability through efficient 

distribution of workload. In addition, the 

monitoring configuration using 

Prometheus and Grafana made it possible 

to accurately pinpoint bottlenecks, which 

verified that FPS reduction happens mostly 

when CPU usage is above 80–90% or 

when HLS buffering delay stacks up. 

Table 1: Performance Analysis of FPS and Latency across Configurations 

Test Scenario 
Average 

FPS 

Latency 

(ms) 

Frame 

Drop (%) 
Observations 

CPU-only Encoding 42–45 2500– ~20% High CPU load, frequent 

buffering, unsuitable for real-
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Test Scenario 
Average 

FPS 

Latency 

(ms) 

Frame 

Drop (%) 
Observations 

(HLS) 3000 time streaming. 

GPU-accelerated 

Encoding (HLS) 
58–60 

2000–

2500 
<5% 

Stable FPS but higher latency 

due to HLS chunking. 

CPU-only Encoding 

(WebRTC) 
48–50 500–600 ~10% 

Acceptable FPS but high CPU 

consumption under load. 

GPU-accelerated 

Encoding (WebRTC) 
59–60 250–350 <2% 

Smooth playback, lowest latency 

observed. 

GPU-accelerated 

Encoding (SRT) 
58–59 400–500 <3% 

Good FPS and reliability, slightly 

higher latency than WebRTC. 

GPU + Kubernetes HPA 

(Autoscaling Enabled) 
59–60 300–400 <2% 

Autoscaling improved FPS 

stability during high viewer load. 

GPU + Network Jitter 

(100 ms delay, 

WebRTC) 

55–58 400–450 ~5% 
Minimal impact of jitter and 

packet loss on FPS. 

CPU + Network Jitter 

(100 ms delay, HLS) 
38–40 

3500–

4000 
~25% 

Severe FPS drop and buffering 

issues under adverse conditions. 

Table 1 also illustrates a stark difference 

between CPU-only and GPU-accelerated 

streaming configurations in FPS, latency, 

and frame drops. CPU-only HLS streams 

only managed to reach 42–45 FPS with 

high latency (2.5–3 seconds) and almost 

20% frame drops because of excessive 

software encoding overhead. Contrarily, 

GPU-accelerated HLS still had near 60 

FPS with less than 5% drops, although 

HLS latency was comparatively high 

owing to its nature of chunk-based 

streaming. 

Network performance is also a possible 

downside. Even with high-speed protocols 

such as WebRTC or SRT, it takes low 

network jitter and little packet loss to have 

a perfectly stable FPS. When running 

streaming pipelines on shared cloud 

infrastructure, variable network latency or 
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bandwidth limitations can result in frame 

drops or inconsistent frame delivery. The 

Kubernetes autoscaling, although helpful, 

can occasionally choke performance 

during scaling operations. Pod restarts or 

rescheduling might lead to short-term FPS 

dips, which can negatively affect the 

viewing experience. 

Low-latency protocols, especially 

WebRTC, performed better. GPU-

accelerated WebRTC reliably gave 59–60 

FPS with 250–350 ms latency, while CPU 

WebRTC only gave 48–50 FPS with 

greater latency. Horizontal Pod 

Autoscaling (HPA) within Kubernetes also 

enhanced stability, keeping close to 

constant 60 FPS and less than 2% frame 

drops upon scaling. 

VII. CONCULSION 

This study showed that FPS optimization 

for low-latency live streaming in 

Kubernetes and container-based 

environments can be done by having GPU 

acceleration, low-latency protocols such as 

WebRTC and SRT, and fine-tuned 

orchestration techniques. GPU-accelerated 

pipelines held almost 60 FPS with sub-

second latency and performed better 

compared to CPU-only configurations that 

were plagued with frame drops and large 

resource usage. Kubernetes, with 

capabilities such as autoscaling and 

resource management, improved streaming 

stability in spite of small fluctuations 

during scale events. The results fill an 

important knowledge gap in current 

literature by considering FPS optimization 

together with latency, offering a viable 

framework for constructing real-time, 

scalable streaming solutions. 
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