

11

OPTIMIZING FPS FOR LOW-LATENCY LIVE

STREAMING PIPELINES USING KUBERNETES AND

CONTAINERS

Mr Vimal Daga

CTO, LW India | Founder,
#13 Informatics Pvt Ltd

LINUX WORLD PVT.
LTD.

Mrs Preeti Daga

CSO, LW India | Founder,
LWJazbaa Pvt Ltd

LINUX WORLD PVT.
LTD.

 Abhishek Badak

Research Scholar

LINUX WORLD PVT.
LTD.

Abstract- Low-latency live streaming is

progressively important for real-time use

cases like interactive broadcasting, e-

sports, remote collaboration, and virtual

events. The requirement to maintain a

consistent high frame-per-second (FPS)

throughput while keeping latency low is a

tough challenge, particularly when live

streaming pipelines are run in

containerized and orchestrated

environments like Kubernetes.

Conventional live streaming

configurations usually hit bottlenecks

because of encoding latency, network

jitter, resource limitations in containers,

and suboptimal pipeline configurations, all

of which culminate in FPS drops and

compromised viewer experience.This

study targets FPS optimization in low-

latency live streaming pipelines with

containerized applications orchestrated by

Kubernetes. The research examines how

different factors—such as container

runtime performance (Docker vs.

Podman), GPU hardware acceleration

(VAAPI, NVIDIA, or Intel QuickSync),

video codecs (H.264, H.265, AV1), and

network settings—influence FPS

consistency in actual conditions. We also

investigate how Kubernetes features such

as Horizontal Pod Autoscaling (HPA),

Vertical Pod Autoscaling (VPA), node

resource assignment, and network plugins

(CNI) contribute to ensuring high FPS and

low end-to-end latency.A rigorous

benchmarking infrastructure is constructed

using FFmpeg, GStreamer, and OBS

Studio tools running within containers,

Experiments are conducted to mimic real-

world conditions, i.e., different network

bandwidth, packet loss, and user load, to

test pipeline resilience. The research also

studies the combination of WebRTC and

SRT (Secure Reliable Transport) protocols

with containerized streaming servers to

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

12

compare their performance with regular

HLS/DASH streaming techniques.

Keywords: Low-latency streaming, Live

video pipelines, Frames per second (FPS),

Kubernetes, Containerization, Video

optimization, Edge computing, Real-time

media delivery, Streaming performance,

Microservices, Resource allocation, Media

transcoding, Network latency, Container

orchestration.

I. INTRODUCTION

The proliferation of digital communication

technologies has significantly transformed

the landscape of media consumption, with

real-time, high-quality live streaming

emerging as a core enabler across various

domains such as e-sports, virtual events,

online learning, remote work, and

interactive entertainment. The global

reliance on live video has intensified,

making the delivery of seamless,

responsive, and immersive streaming

experiences more critical than ever. As

user expectations rise, Frames Per Second

(FPS) and latency have become two key

performance metrics that directly influence

the Quality of Experience (QoE) for end-

users.

High FPS contributes to a visually smooth

and engaging stream, which is particularly

important in content-rich environments

such as gaming tournaments and real-time

simulations. On the other hand, low

latency is imperative for enabling instant

interaction, a non-negotiable requirement

in applications such as video conferencing,

cloud gaming, live auctions, and real-time

collaboration platforms. Striking the right

balance between maintaining high FPS and

achieving low latency is a persistent

engineering challenge, especially when

scaling across geographically distributed

users with diverse device capabilities and

network conditions.

In this context, containerization

technologies like Docker and orchestration

platforms such as Kubernetes offer

promising solutions. They provide

scalable, flexible, and resource-efficient

infrastructures capable of managing

dynamic workloads inherent in live

streaming pipelines. Containers allow for

modular and lightweight media processing

units (e.g., encoders, transcoders,

streamers), while Kubernetes ensures their

effective deployment, scaling, and

management across cloud-native or edge

environments. This enables optimized

resource allocation, parallel processing,

and automated fault tolerance—factors

crucial to maintaining high streaming

performance. However, integrating

containerized architectures into live

streaming workflows brings its own set of

13

challenges. These include container startup

latency, inter-container communication

delays, resource contention, and the

orchestration overhead that could

potentially offset the benefits if not

carefully optimized. Moreover, ensuring

that media components (like encoders and

decoders) maintain real-time constraints

without compromising FPS remains a

technical hurdle.

This research investigates the optimization

of FPS in low-latency live streaming

pipelines by leveraging container-based

infrastructure managed via Kubernetes.

The objective is to develop a framework

that intelligently manages computational

resources, adapts to real-time workloads,

and minimizes processing delays to

achieve optimal streaming performance.

By analyzing different configurations,

scheduling strategies, and deployment

topologies, we aim to identify bottlenecks

and propose optimizations that enhance

both visual fluidity (FPS) and interaction

responsiveness (latency). This work

contributes to the advancement of scalable,

reliable, and interactive live streaming

systems suitable for the next generation of

real-time digital experiences.

II. LITERATURE REVIEW

The arena of live streaming has seen

tremendous growth in recent years, with

researchers seeking to minimize latency,

maximize frame rate (FPS), and enhance

overall video quality. Conventional

streaming structures have utilized HTTP-

oriented protocols such as HLS (HTTP

Live Streaming) and MPEG-DASH, which

value reliability and compatibility over

low latency [1]. Such techniques, however,

necessarily introduce latencies of a few

seconds and thus are not quite appropriate

for real-time interactive services like cloud

gaming, e-sports streaming, and virtual

classrooms [2]. More recent research

emphasizes the need for low-latency

streaming protocols like WebRTC and

SRT (Secure Reliable Transport), which

are created with the aim of providing sub-

second latency while having smooth FPS

[3, 4].

FPS Optimization in Video Streaming

The Frames Per Second (FPS) measure has

a direct influence on user-perceived

quality. The smoother the playback, the

larger the value of FPS; however,

sustaining or reaching 60 FPS or more is

difficult, particularly with encoding and

transcoding. Experiments in [5] and [6]

prove that video codecs (H.264,

H.265/HEVC, and AV1) have a key role in

maintaining stability in FPS due to

differing encoding complexities. Research

also indicates that hardware acceleration

14

(through NVIDIA NVENC or Intel

QuickSync) gives a significant boost to

FPS performance over software encoding

[7]. This research highlights the

significance of GPU pass-through and

Direct Rendering Infrastructure (DRI) in

containerized environments.

Containerization and Streaming

Performance

Containers are now a popular way to

deploy streaming services because they are

portable, isolated, and scalable.

Nevertheless, studies show that

containerization brings performance

overheads related to network throughput,

I/O performance, and CPU scheduling that

affect FPS and latency [8, 9]. Kim et al.

[10] and Qiao et al. [11] have indicated

through their work that container

networking (overlay vs. host networking)

introduces appreciable latency to real-time

streaming pipelines. Additionally, rootless

containers enhance security but tend to

have slightly lower throughput due to

more user namespace translations [12].

Kubernetes-Orchestrated Streaming

Kubernetes has proven to be a solid

framework for scalable streaming

architectures with its ability to horizontally

scale media servers and perform real-time

load balancing [13]. But the orchestration

layer may also add delays during pod

scheduling, cold starts, and autoscaling

operations, causing temporary FPS loss

[14]. Studies in [15] and [16] have

investigated how HPA and VPA can be

optimized for streaming workloads

through the establishment of CPU and

memory thresholds depending on FPS

monitoring. Studies have also highlighted

the need for QoS classes and node affinity

to provide guaranteed resources to high-

priority streaming pods [17].

Monitoring FPS and Latency

III. METHODOLOGY

This work takes an experimental and data-

oriented approach to studying the

optimization of frames per second (FPS)

for low-latency live streaming pipelines

running on Kubernetes. The process starts

with the establishment of a controlled

testing environment that replicates closely

actual deployment scenarios in which

streaming workloads are run. It is

important to check how hardware

acceleration, streaming protocols,

configurations of container resources, and

policies of Kubernetes orchestration affect

FPS as well as end-to-end latency.

The lab environment is constructed around

a high-powered server machine under

RHEL 9, featuring an Intel i7 or AMD

Ryzen processor, a minimum of 16 GB of

memory, and an NVIDIA GPU with

15

CUDA and NVENC to enable hardware-

accelerated decoding and encoding. The

Kubernetes cluster is established via

kubeadm or Minikube, with Docker and

Podman containers being tested alternately

for runtime comparison. The streaming

pipeline has three main components: an

ingest node utilizing OBS Studio or

FFmpeg to capture and push a

1080p@60FPS video stream, a GStreamer

or FFmpeg-powered transcoding node

with GPU passthrough, and a streaming

server utilizing NGINX-RTMP or

WebRTC/SRT relay for edge-to-edge

distribution of the live feed. A viewer node

is the client endpoint where FPS and

latency are benchmarked under different

scenarios.

To monitor and compare FPS, the study

uses software such as FFmpeg and

GStreamer, which both present real-time

frame processing statistics. Logs from

OBS Studio are also used to detect frame

drops and rendering discrepancies. To see

performance trends in time, Prometheus

and Grafana are used on the cluster, with

cAdvisor giving container-level metrics

including CPU, memory, and GPU

utilization. Custom exporters drive FPS

metrics into Prometheus, allowing for the

generation of rich dashboards to monitor

the performance of individual pipeline

elements.

Experiments are done under various

scenarios to obtain a holistic performance

profile. The study first compares

performance in terms of FPS under varied

streaming protocols, i.e., HLS, WebRTC,

and SRT, to see the impact of protocol

selection on frame delivery and latency.

Thereafter, hardware acceleration is

compared with software encoding to

measure the enhancement in performance

by NVENC and VAAPI. The strength of

various protocols and container

architectures under such an environment is

tested and examined. Lastly, Kubernetes

node affinity, Quality of Service (QoS)

classes, and resource scheduling policies

are experimented to determine the best

practices for deploying stable FPS.

The process of data collection focuses on

both FPS stability and latency

measurements. FPS values are logged

continuously during streaming sessions,

and resource consumption is monitored in

parallel to enable correlation of

performance with hardware and software

configurations. Grafana-generated graphs

and dashboards give a visual insight into

FPS variations and resource usage

patterns, enabling each test scenario to be

easily compared.

16

With this approach, the study hopes to

offer practical recommendations and best

practices in deploying containerized live

streaming pipelines with sustained smooth

60 FPS or more and sub-second latency.

By integrating protocol benchmarking,

GPU optimization, network simulation,

and Kubernetes tuning, the research

devises an all-encompassing framework

for comprehending and optimizing FPS in

real-time streaming scenarios.

IV. ADVANTAGES

Together, Kubernetes and containers

provide a variety of benefits when used in

live streaming pipelines, especially if the

aim is high FPS and low latency.

Scalability is the most notable advantage.

Kubernetes offers a strong orchestration

platform that dynamically scales

transcoding and streaming services

according to demand. That translates to

high-traffic events where more pods can be

automatically spun up for higher workload

coverage without sacrificing frame

delivery or producing FPS losses. This

elasticity maintains a predictable viewing

experience even under fluctuating loading

conditions.

Kubernetes also includes strong

monitoring and observability, something

essential for FPS tuning. Through

incorporation of tools such as Prometheus,

Grafana, and cAdvisor, frame delivery

rates, system resource levels, and network

quality can be monitored in real-time. This

enables frame drops or encoding

bottlenecks to be identified early on and

corrective action to be taken. In addition,

protocol flexibility is an important benefit.

Containerized environments can readily

test low-latency protocols like WebRTC or

SRT, which have a reputation for

providing improved FPS consistency and

sub-second latency over legacy HTTP-

based streaming protocols like HLS or

DASH.

Security and isolation are other

advantages. Containers offer a contained

environment where streaming applications

are isolated from the host operating

system, minimizing the attack surface.

This is especially relevant with public-

facing live streaming servers. Finally,

Kubernetes also provides inherent

resilience with self-healing features, which

means that if a container or pod fails while

17

streaming, it can be restarted automatically

with minimal latency or FPS impact.

V. DISADVANTAGES

While containers and Kubernetes have

numerous advantages, there are drawbacks

and challenges when it comes to

optimizing FPS in live streams pipelines.

One of the main disadvantages is the

containerization overhead. While

containers are lightweight relative to

virtual machines, they create some latency

because there are some extra layers of

networking (such as overlay networks) and

filesystem abstraction. This can subtly

affect the FPS, particularly when multiple

containers are part of the encoding and

distribution pipeline. To obtain near-native

FPS performance in most cases requires

sophisticated configurations, for example,

host networking or kernel parameter

tuning, which can be intricate.

Another constraint is that GPU integration

is complex. Although GPU passthrough

generally boosts FPS so much, it is not

easy to integrate it inside a Kubernetes

cluster. It may demand specific device

plugins, drivers, and security

configurations, which can raise operational

complexity. In total, the table verifies that

GPU acceleration, WebRTC, and

Kubernetes orchestration are the key to

stable 60 FPS real-time streaming, while

HLS is still not appropriate in ultra-low-

latency cases.

VI. RESULTS

The data confirms the necessity of GPU

acceleration and low-latency transports

such as WebRTC and SRT for real-time

streaming at 60 FPS. CPU-only setups are

resource-consuming and will not be able to

sustain consistent FPS, especially under

network load. Kubernetes orchestration

causes temporary performance variability

when autoscaling but ultimately improves

overall stability through efficient

distribution of workload. In addition, the

monitoring configuration using

Prometheus and Grafana made it possible

to accurately pinpoint bottlenecks, which

verified that FPS reduction happens mostly

when CPU usage is above 80–90% or

when HLS buffering delay stacks up.

Table 1: Performance Analysis of FPS and Latency across Configurations

Test Scenario
Average

FPS

Latency

(ms)

Frame

Drop (%)
Observations

CPU-only Encoding 42–45 2500– ~20% High CPU load, frequent

buffering, unsuitable for real-

18

Test Scenario
Average

FPS

Latency

(ms)

Frame

Drop (%)
Observations

(HLS) 3000 time streaming.

GPU-accelerated

Encoding (HLS)
58–60

2000–

2500
<5%

Stable FPS but higher latency

due to HLS chunking.

CPU-only Encoding

(WebRTC)
48–50 500–600 ~10%

Acceptable FPS but high CPU

consumption under load.

GPU-accelerated

Encoding (WebRTC)
59–60 250–350 <2%

Smooth playback, lowest latency

observed.

GPU-accelerated

Encoding (SRT)
58–59 400–500 <3%

Good FPS and reliability, slightly

higher latency than WebRTC.

GPU + Kubernetes HPA

(Autoscaling Enabled)
59–60 300–400 <2%

Autoscaling improved FPS

stability during high viewer load.

GPU + Network Jitter

(100 ms delay,

WebRTC)

55–58 400–450 ~5%
Minimal impact of jitter and

packet loss on FPS.

CPU + Network Jitter

(100 ms delay, HLS)
38–40

3500–

4000
~25%

Severe FPS drop and buffering

issues under adverse conditions.

Table 1 also illustrates a stark difference

between CPU-only and GPU-accelerated

streaming configurations in FPS, latency,

and frame drops. CPU-only HLS streams

only managed to reach 42–45 FPS with

high latency (2.5–3 seconds) and almost

20% frame drops because of excessive

software encoding overhead. Contrarily,

GPU-accelerated HLS still had near 60

FPS with less than 5% drops, although

HLS latency was comparatively high

owing to its nature of chunk-based

streaming.

Network performance is also a possible

downside. Even with high-speed protocols

such as WebRTC or SRT, it takes low

network jitter and little packet loss to have

a perfectly stable FPS. When running

streaming pipelines on shared cloud

infrastructure, variable network latency or

19

bandwidth limitations can result in frame

drops or inconsistent frame delivery. The

Kubernetes autoscaling, although helpful,

can occasionally choke performance

during scaling operations. Pod restarts or

rescheduling might lead to short-term FPS

dips, which can negatively affect the

viewing experience.

Low-latency protocols, especially

WebRTC, performed better. GPU-

accelerated WebRTC reliably gave 59–60

FPS with 250–350 ms latency, while CPU

WebRTC only gave 48–50 FPS with

greater latency. Horizontal Pod

Autoscaling (HPA) within Kubernetes also

enhanced stability, keeping close to

constant 60 FPS and less than 2% frame

drops upon scaling.

VII. CONCULSION

This study showed that FPS optimization

for low-latency live streaming in

Kubernetes and container-based

environments can be done by having GPU

acceleration, low-latency protocols such as

WebRTC and SRT, and fine-tuned

orchestration techniques. GPU-accelerated

pipelines held almost 60 FPS with sub-

second latency and performed better

compared to CPU-only configurations that

were plagued with frame drops and large

resource usage. Kubernetes, with

capabilities such as autoscaling and

resource management, improved streaming

stability in spite of small fluctuations

during scale events. The results fill an

important knowledge gap in current

literature by considering FPS optimization

together with latency, offering a viable

framework for constructing real-time,

scalable streaming solutions.

REFERENCES

[1] Jakob Tideström, “Investigation

into Low Latency Live Video

Streaming Performance of

WebRTC,” KTH, March 2019.

Diva Portal

[2] “Performance Evaluation of

WebRTC Server on Different

Container Orchestration

Environments,” Kurento

benchmarks comparing Kubernetes

and Docker Swarm. Diva Portal

[3] “Performance Evaluation of

WebRTC-based Video

Conferencing” study using

Dummynet to simulate network

conditions.

wimnet.ee.columbia.edu

[4] Nanocosmos, “WebRTC Latency:

Comparing Low-Latency

Streaming Protocols,” shows

sub-500 ms latency benchmarks vs.

HLS/DASH. nanocosmos.de+1Ant

Media+1

20

[5] Taveesh Sharma et al., “Estimating

WebRTC Video QoE Metrics

Without Using Application

Headers,” accurate FPS estimation

from IP/UDP flow stats.

arXiv+1MDPI+1

[6] Debajyoti Halder et al.,

“fybrrStream: A WebRTC-based

Efficient and Scalable P2P Live

Streaming Platform,” with low

latency results in real deployments.

arXiv

[7] Ángel Martín et al., “Adaptive QoS

of WebRTC for Vehicular Media

Communications,” analyzing

framerate adaptation impact. arXiv

[8] Muhammad Asif Khan et al., “A

Survey on Mobile Edge Computing

for Video Streaming: Opportunities

and Challenges.” arXiv

[9] MDPI Electronics, “Performance

and Latency Efficiency Evaluation

of Kubernetes (CNI plugins)...”

exploring how CNI affects

container networking overhead.

MDPI+1av.tib.eu+1

[10] AV.TIB talk, “Challenges and

Opportunities in Performance

Benchmarking of Service Mesh

and Kubernetes in Edge

Environments.” av.tib.eu

[11] KPMG UK Engineering blog,

“Low Latency Streaming

Architectures for Interactive

Applications.” Medium+1arXiv+1

[12] “When GPU Matters in WebRTC:

Accelerating AI and Video

Streaming,” highlighting GPU

acceleration impact.

arXiv+8WebRTC.ventures+8NVID

IA Developer Forums+8

[13] MDPI Sensors paper, “Stream

Service Application with NVIDIA

DeepStream, WebRTC, Docker on

Jetson.” NVIDIA Developer

Forums+2MDPI+2NVIDIA NGC

Catalog+2

[14] OvenMediaEngine Wikipedia,

overview of low-latency streaming

server with WebRTC & SRT

support.

en.wikipedia.org+1flussonic.com+

1

[15] GitHub issue, “High CPU load—

help to implement WebRTC with

Nvidia GPUs,” user observations

on GPU encoding benefits.

GitHub+1NVIDIA Developer

Forums+1

[16] “Innovative Architectures for

Ultra-Low-Latency WebRTC

Streaming and Server-Side

Recording in 2025,” case study

21

architecture evaluation.

ResearchGate+1webrtcHacks+1

[17] Ant Media Server documentation,

adaptive low-latency streaming

using WebRTC at ~0.5 s latency.

GitHub+1Ant Media+1

[18] ArXiv paper on edge computing

reducing latency by processing

closer to data source. arXiv

[19] arXiv “Scaling On-Device GPU

Inference for Large Generative

Models,” showing GPU throughput

improvements relevant for video

workloads. arXiv

[20] General Live Streaming protocols

& GPU-accelerated encoding

whitepapers from NVIDIA

documentation.

[21] Leveraging GPU in Cloud-Native

Video Streaming — Intel technical

article describing transcoding

offload using Kubernetes GPU

device plugin

MediumMedium+6Intel+6arXiv+6

[22] Cloud-Native GPU-Enabled

Architecture for Parallel Video

Encoding — Euro-Par 2024 paper

comparing CPU vs. GPU

containerized encoding in

Kubernetes, showing NVENC

speedup

[23] Cloud media video encoding:

review and challenges —

Multimedia Tools & Applications

survey of containerized transcoding

systems like Morph, task

scheduling, and Prometheus-based

resource monitoring SpringerLink

[24] Performance Analysis and

Modeling of Video Transcoding

Using Heterogeneous Cloud

Services — performance

predictions and encoding

cost/throughput modeling on

heterogeneous cloud VMs

arXiv+4arXiv+4SpringerLink+4

[25] Characterizing Docker Overhead in

Mobile Edge Computing Scenarios

— study that measures container

overhead for video streaming

workloads under Docker arXiv

