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Abstract- Ride-hailing companies such as 

Ola, Uber, Rapido, inDrive, and Namo 

Yatri control urban mobility but their real-

time fare information models tend to 

confuse and disillusion commuters. This 

paper proposes Cabinet, an intelligent real-

time fare aggregation and comparison 

platform that aggregates data from various 

ride-hailing apps. Cabinet uses a scalable 

microservices infrastructure to gather, 

process, and present live fare information, 

along with using predictive analytics to 

anticipate surge price trends. With the use 

of API integration, web scraping 

techniques, and AI-driven modelling, 

Cabinet not only empowers users with fare 

transparency but also provides useful data 

for urban planners and policymakers. The 

system illustrates how multi-platform 

aggregation improves price fairness, aids in 

more intelligent transportation choices, and 

sets the stage for further smart city 

applications. In the end, Cabinet is a bridge 

of technology between  

ride-hailing networks and mobility 

solutions that are consumer-focused, 

providing affordability combined with 

intelligent travel decision-making. 

Keywords:  Ride-hailing platforms, Urban 

mobility, Real-time fare aggregation, Fare 

comparison, Microservices architecture, 

API integration, Web scraping, Predictive 

analytics, Surge pricing. 

I. INTRODUCTION 

Over the last few years, ride-hailing 

companies like Ola, Uber, Rapido, inDrive, 

and Namo Yatri have completely altered 

the way individuals move around urban 

areas. These services offer convenient, 

flexible, and on-demand transportation, 

posing a healthy alternative to classic taxis 

and public transport. Nonetheless, their 

dependence on dynamic pricing 

mechanisms—frequently influenced by 
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demand peaks, weather, or traffic—has 

brought about high fare volatility. For 

commuters, this generates uncertainty and 

a lack of transparency in the cost of travel, 

while policymakers and urban planners are 

not provided with consistent data to 

comprehend and manage the overall effect 

of such pricing models on mobility 

ecosystems. Current fare configurations 

and comparison practices are disjointed, 

with passengers required to manually 

access multiple apps in order to determine 

the best value. Such inefficiency not only 

annoys commuters but also prevents 

maximum utilization of informed choice-

making over transportation options. 

Concurrently, the lack of a real-time, 

aggregated fare database also means urban 

mobility research and transport planning do 

not have a solid data base on which to 

formulate policy and construct 

infrastructure.To fill in these gaps, this 

paper presents Cabinet, a cutting-edge real-

time fare aggregation and comparison 

portal that integrates pricing information 

from multiple ride-hailing platforms into 

one open interface. Cabinet uses a hybrid 

data acquisition model that applies API 

integration, web scraping, and cloud-based 

microservices to ensure that the system can 

process and present real-time fare 

information with little delay. In addition, 

Cabinet also features machine learning-

based predictive analytics that predicts 

surge pricing patterns, allowing users to 

schedule travel better and steer clear of 

high charges during peak season. 

In addition to its user-level advantage, 

Cabinet is beneficial to urban planners, 

researchers, and transit authorities as it 

produces aggregated datasets that expose 

fare patterns, demand volatility, and 

service needs per area and platform. These 

insights can inform policy-making, fare 

setting, and smart city mobility plans, 

coordinating transportation networks in 

accordance with the values of affordability, 

accessibility, and sustainability. 

Finally, Cabinet is more than a fare 

comparison app; it is a technological 

crossing point for citizens, service 

providers, and government. By integrating 

real-time data processing, predictive 

modeling, and human-centered design, 

Cabinet pushes the vision of a brighter, 

more equitable, and data-first urban 

transportation future, enabling the 

development of Mobility-as-a-Service 

(MaaS) and paving the way for the next 

generation of smart city solutions. 

II. LITERATURE REVIEW:  

The last decade has witnessed the fast-

paced development of ride-hailing services, 

which has been widely researched in 
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academic and industry literature, most of it 

concentrating on their economic, 

technological, and mobility implications 

for cities. Initial research (e.g., Cohen et 

al., 2016; Rayle et al., 2019) examined the 

disruptive character of ride-hailing services 

such as Uber and Ola, noting their 

contribution towards changing urban 

mobility patterns and offering alternatives 

to traditional taxi services. Although these 

studies did recognize the advantage of on-

demand mobility, they also identified 

nascent challenges like fare uncertainty and 

regulatory loopholes. 

A large body of evidence has since 

analyzed dynamic pricing algorithms, or 

"surge pricing," as a central aspect of ride-

hailing economics. Studies by Castillo et 

al. (2017) and Zha et al. (2018) explain the 

use of surge pricing to balance demand and 

supply but frequently fail to be transparent 

to commuters and have the potential to 

further worsen affordability issues. Current 

research also shows that although dynamic 

pricing boosts platform efficiency, 

consumers have limited insight into what 

determines fares, and they have to 

manually compare prices across apps. 

The Mobility-as-a-Service (MaaS) idea has 

been a possible solution to integrate 

disjointed transportation services. Studies 

by Jittrapirom et al. (2017) and Hensher et 

al. (2020) highlight the need for integrated 

digital platforms that aggregate information 

from multiple mobility providers to 

enhance user experience. But the majority 

of MaaS research centers on subscription-

based models and multi-modal mobility 

(e.g., buses, trains, bicycles), with 

relatively less emphasis on ride-hailing fare 

real-time aggregation—a key area that 

Cabinet aims to fill. 

Several authors have researched data 

aggregation and API-based architectures 

within transport technology. For example, 

Shaheen et al. (2021) describe how open 

APIs can facilitate ease of integration 

between mobility services, and Jiang et al. 

(2022) suggest microservices-based 

architectures for large-scale urban mobility 

systems. These pieces of work supply 

technical underpinnings to Cabinet's 

approach, which combines API integration, 

automated data pipelines, and predictive 

analysis. 

Lastly, consumer behaviour research on 

ride-hailing (e.g., Chan & Shaheen, 2021) 

shows that users also increasingly expect 

price transparency and equity. Still, as of 

the date this is written, there is no single 

platform that provides real-time, multi-

platform fare comparison for prominent 

ride-hailing operators. 

III. METHODOLOGY 
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Cabinet development employed a formal, 

multi-step methodology to make the 

system scaleable, accurate, and real-time 

fare comparison across multiple ride-

hailing platforms. The initial phase was 

system architecture design where Cabinet 

was envisioned as a cloud-native, 

microservices-oriented platform. This 

modular approach enabled every 

function—data ingestion, fare aggregation, 

analytics, and user interface rendering—to 

be fully independent of one another, 

exchanging data through lightweight 

RESTful APIs. This methodology not only 

facilitated smooth addition of future ride-

hailing companies but also made it possible 

for the platform to scale cost-effectively 

with growing user loads. The platform was 

implemented on AWS Cloud infrastructure 

using services like EC2 for computation, 

Lambda for serverless computing, and S3 

for storage, which offered scalability and 

reliability at the cost of affordability. 

Stage two included data collection, which 

was a crucial part of Cabinet's operation. A 

hybrid data collection approach was used 

to manage the varying ecosystems of Ola, 

Uber, Rapido, inDrive, and Namo Yatri. 

Where accessible, official APIs were used 

to fetch structured and dependable fare 

data. For other services without open APIs, 

automated web scraping methodologies 

based on Selenium and Puppeteer pulled 

live fare data from their mobile web views. 

Where legal, a limited amount of network 

traffic analysis was undertaken to detect 

unindexed endpoints for more direct data 

access. All data collection operations were 

controlled by a scheduling engine that 

executed cron jobs every 30–60 seconds, 

balancing real-time freshness with platform 

rate limits. 

Once gathered, the data went into a speed 

and accuracy-oriented processing and 

storage pipeline. Received data was 

normalized into a common JSON schema 

to ensure standardized formats between 

providers, correcting unit inconsistencies, 

timestamp inconsistencies, and fare 

structure inconsistencies. In order to 

manage high volumes of incoming 

requests, data flow was handled by a 

queue-based system in AWS SQS, and a 

hybrid database structure was used: 

MongoDB housed unstructured and semi-

structured fare information for adaptability, 

and PostgreSQL drove structured reporting 

and analytics queries.  

Data cleansing procedures like outlier 

identification and duplicate removal were 

utilized to keep fare comparisons 

trustworthy and accurate. To push the 

boundaries beyond static fare presentation, 

Cabinet used predictive analytics to 

anticipate potential surge pricing. 
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Historical fare datasets enriched with 

contextual information like time of day, 

pickup and drop-off coordinates, weather 

conditions, and prior surge histories were 

fed into an XGBoost-trained Gradient 

Boosting Regression model. This three to 

six months of fare history training model 

was tested and validated with an 80:20 

division between training and testing, and 

it produced a mean absolute error (MAE) 

of less than 8% for fare surge prediction. 

This prediction layer enables Cabinet to 

notify users of impending fare surges and 

recommend the best travel times.  

 

Figure 1: Flow chart for cabinet 

Lastly, rigorous testing and validation 

guaranteed the reliability of the platform. 

Unit and integration testing suites like 

Mocha and Jest were used to validate 

individual components, while Apache 

JMeter was used for load testing, 

mimicking thousands of simultaneous users 

to check performance under load. Beta 

testing using real-world scenarios was done 

in Lucknow, Delhi, and Bangalore to 

gather feedback on latency, precision, and 

user experience. Cabinet reliably provided 

fare results in 2–3 seconds and had 99.2% 

uptime during load testing. 

In all stages, legal and ethical adherence 

was an important concern. API usage was 

compliant with platform terms of service, 

scraper routines were planned so as not to 

burden servers heavily, and all user 

information was anonymized following 

GDPR principles and India's DPDP Act. 

These methodological actions collectively 

built a strong, ethical, and scalable 

platform that proves real-time data 

aggregation can boost consumer 

transparency as well as urban mobility 

research. 

IV. ADVANTAGES: 

1.Real-Time Fare Transparency: 

Aggregates fares from Ola, Uber, Rapido, 

inDrive, and Namo Yatri in one interface. 

Saves users from switching between 

multiple apps to compare prices. 

2.Consumer Empowerment: Provides surge 

pricing alerts and fare forecasts. Helps 

commuters plan trips at optimal times, 

avoiding high charges. 

3.Technical Scalability: Built on 

microservices architecture, allowing easy 
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integration of new ride-hailing services. 

Supports future expansion into buses, 

metros, and shared mobility (MaaS). 

4.Data for Policymakers & Smart Cities: 

Aggregated fare data can inform urban 

planning, transport regulations, and 

pricing policies. Identifies underserved 

routes and surge-prone regions. 

5.Predictive Analytics: Uses machine 

learning to forecast fare surges. Enables 

proactive decision-making for commuters 

and businesses. 

6.Improved User Experience: Presents fare 

data in a clear, user-friendly way. Acts 

like a travel decision assistant, not just a 

static price checker. 

V. DISADVANTAGES: 

1.Data Dependency: Relies on APIs and 

scraping; any changes to these systems 

can disrupt fare collection. 

2.Legal & Ethical Risks: Potential issues 

with platform terms, scraping policies, or 

evolving data regulations. 

3.Prediction Limitations: Surge forecasting 

depends on historical data; unpredictable 

events (e.g., protests, weather) can reduce 

accuracy. 

4.Operational Costs: Cloud servers, 

scraping tools, and real-time data 

handling require continuous investment 

for scaling. 

VI. RESULTS AND FINDINGS 

The testing phase of Cabinet demonstrated 

how the system efficiently performs real-

time fare aggregation and surge price 

prediction and provides actionable insights 

to both users and researchers. The 

evaluation process consisted of system 

performance testing and predictive model 

validation together with beta user trials 

across three cities which included 

Lucknow, Delhi and Bangalore. 

System Performance: The design of 

Cabinet enables efficient real-time fare 

data processing which the achieved results 

validate. The load testing revealed that the 

system could handle 45,000 fare requests 

per hour while returning responses within 

2.1 seconds. The platform demonstrated its 

scalability and resilience by maintaining 

99.2% uptime when handling 5,000 

concurrent users during simulated peak 

loads. 

Table 1: Cabinet: A Real-Time Multi-

Platform Ride-Hailing Fare Comparison 

and Data Aggregation System 

Metric Result Observation 

Average 

Response 

Time 

2.1 

seconds 

Fast enough for 

real-time use; 

users didn’t 

experience 

delays. 

System 99.2% Stable during 
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Metric Result Observation 

Uptime peak loads of up 

to 5,000 users. 

Requests 

Handled/Hour 
45,000+ 

Shows strong 

scalability of the 

cloud 

infrastructure. 

   

Data Accuracy 97.8% 

Only minor 

discrepancies (±5 

INR) due to rapid 

fare changes. 

 

Predictive Analytics Evaluation: The surge 

prediction model known as XGBoost 

regression used six months of fare data for 

training purposes and underwent accuracy 

evaluation. The model generated a Mean 

Absolute Error (MAE) of 7.6% indicating 

its predicted fares closely matched actual 

surge fares. During its live testing phase 

Cabinet demonstrated 76% accuracy in 

predicting surge events which allowed 

users to postpone their bookings for cost 

savings. User Testing and Feedback: The 

beta testing phase involved 150 users from 

Lucknow, Delhi, and Bangalore who 

evaluated the platform for usability and 

time efficiency and overall user experience. 

Most testers provided positive feedback 

through the platform: 92% saved time, 

88% saved money, and 85% found the 

interface simple and user-friendly. 

VII. CONCLUSION  

By providing a clear, real-time rate 

comparison platform for ride-hailing 

services, Cabinet fills a significant void in 

urban mobility. Cabinet uses web scraping, 

microservices architecture, API integration, 

and AI-driven analytics to give commuters 

the ability to make well-informed decisions 

and to provide policymakers with useful 

mobility data. The platform promotes 

competition among service providers, 

improves price fairness, and advances the 

larger goal of intelligent, customer-focused 

urban transportation. Cabinet serves as a 

technology link between commuters and 

mobility networks, opening the door to 

more intelligent, efficient, and egalitarian 

transportation ecosystems. 
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