
131

A SECURE EXECUTION WRAPPER FOR PYTHON’S

EVAL() FUNCTION IN AI AND WEB APPLICATIONS

Vimal Daga

CTO, LW India | Founder,

#13 Informatics Pvt Ltd

LINUX WORLD PVT.

LTD.

Preeti Daga

CSO, LW India | Founder,

LWJazbaa Pvt Ltd

LINUX WORLD PVT.

LTD.

Pankaj Saini

Research Scholar

LINUX WORLD PVT.

LTD.

Abstract- The `eval()` in Python executes

expressions given as strings at the time of

program execution. Though it is strong and

handy in the field of AI and web

development, it can be dangerous if used

improperly. Attackers may exploit this

weakness to execute malicious code. In

this study, we designed a secure wrapper

for the `eval()` function so that safe usage

is feasible without risking code injection.

Our wrapper prevents malicious keywords,

restricts the context in which code

executes, and imposes a time limit to

prevent long-lasting or destructive

expressions. We applied this wrapper

under different circumstances such as data

processing in AI and web input handling.

The outcome shows that our approach can

inhibit attacks while being able to perform

flexible and efficient dynamic code

execution.

Keywords: Python eval function, safe

code execution, dynamic evaluation of

expressions, prevention of code injection,

security at runtime execution, sandboxed

execution safety.

I. INTRODUCTION

Python is among the most widely used

programming languages in artificial

intelligence, web development,

automation, and data science. Python is so

popular due to its simplicity and dynamic

nature. One of the dynamically powerful

features is the `eval()` function, which

comes built-in. `eval()` enables the

evaluation of Python expressions as strings

during runtime. Although `eval()` can

prove very powerful in flexible logic

evaluation, configuration parsing, and on-

the-fly computations, it can be very

dangerous if used incorrectly.

The primary threat with `eval()` is how it

can execute arbitrary code. Attackers may

use this to run malicious commands. This

becomes particularly problematic in

applications where user input is explicitly

evaluated, e.g., chatbots, dynamic web

forms, or AI pipelines that adapt logic

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

132

depending on data. Abusing `eval()` can

lead to security threats such as code

injection, unauthorized access to files, or

even full system hijacking.

While programmers are generally

cautioned against using `eval()` in insecure

environments, there are not many scholarly

solutions that concentrate on making

`eval()` safe rather than eliminating it.

There are still many real-world uses,

particularly in artificial intelligence and

configurable web applications, which

continue to need controlled dynamic

evaluation.

This paper introduces a lightweight, secure

execution wrapper for the `eval()`

function. This wrapper enables safe use of

`eval()` without risking the system with

significant security vulnerabilities. Our

strategy consists of input sanitization,

execution timeout, and restricted

evaluation environments to keep away

from dangerous built-in functions and

modules. We test this wrapper in real-

world AI and web applications to

demonstrate that it effectively achieves

both security and dynamic flexibility.

By acquiring `eval()` rather than removing

it, this work fosters more secure Python

development and encourages responsible

use of one of Python's most capable, yet

dangerous, features.

II. Literature Review

 Python's `eval()` function has been

popular for its power and versatility. It

enables developers to evaluate expressions

at runtime dynamically. But it has come

under a great deal of fire for creating

significant security threats when fed

untrusted input. A lot of the literature and

debate among developers centers around

the risks of using `eval()` due to the

possibility of arbitrary code execution.

Most programming tutorials and

communities, such as Stack Overflow and

the Python documentation, recommend

against using `eval()` at all or using safer

alternatives. `ast.literal_eval()` is usually

suggested as a safe alternative because it

only evaluates literals, not expressions.

`literal_eval()` is a good choice in simple

applications, but it lacks support for

dynamic logic and cannot be used in more

sophisticated applications that need

controlled evaluation.

A few researchers have examined the

general concept of sandboxed execution

within dynamic programming languages.

Chisari et al. (2019), for instance,

examined the dangers of dynamic code

execution within web contexts and

proposed that restricted execution models

be utilized. Their work was mostly

133

concerned with server-side script injection,

though, and did not address Python or the

`eval()` function in particular.

Other open-source efforts such as PyPy

and Skulpt have sandboxed at the

interpreter level. However, the solutions

are either too heavyweight for small

applications or not being maintained for

secure eval use-cases. Moreover, previous

academic work has focused on overall

software sandboxing methods or virtual

machines, which are not light enough for

straightforward script-running tasks in AI

pipelines or web backends.

Currently, there is limited effort directed at

developing a lightweight, useful, and safe

wrapper for Python's `eval()` function that

retains the advantages of dynamic

evaluation with its weaknesses. This need

is even more conspicuous as programmers

still require runtime expression parsing in

applications such as artificial intelligence,

automated reasoning systems, and user-

configurable applications.

III. METHODOLOGY

This study employs a technique that wraps

up Python's native `eval()` securely, light,

and reusable as a function. This

configuration allows secure dynamic

expression evaluation. The proposed

solution, designated as `safe_eval()`,

incorporates multiple protection layers to

minimize security vulnerabilities due to

arbitrary code execution. The input

expression is first checked for unsafe

keywords such as `import`, `exec`, `open`,

`os`, `eval`, and any invocation of double

underscores like `__import__`. These are

usual means of injecting malicious code.

In case of occurrence of any of these

keywords, the execution is automatically

blocked to avoid unauthorized access or

dangerous activities. For a safe execution

environment, the `eval()` function is

invoked with a limited global namespace

by passing `{\"__builtins__\": None}`

explicitly.

This prevents access to Python's built-in

modules and functions while allowing only

user-specified variables via a local context

(`allowed_vars`). A timeout facility is

incorporated using Python's `signal`

module. This prevents long, running or

never-ending expressions from crashing

the system by imposing a one-second

execution time limit. Subsequently, the

operation is terminated with a

`TimeoutError`. The function incorporates

proper error handling to capture exceptions

such as `SyntaxError`, `TimeoutError`, and

`ValueError`. This makes the wrapper fail

safely and securely without causing the

host program to crash.

134

Figure 1: A Secure Execution Wrapper For

Python’s Eval() Function In Ai And Web

Applications

All attempts at execution along with their

input, output, and status are written to the

log for auditing and debugging purposes.

This tiered methodology makes the

`safe_eval()` function appropriate for use

in actual applications requiring controlled

dynamic evaluation, like AI data

preprocessing operations and web-based

input handling. The implementation strikes

an effective balance between flexibility

and safety, enabling developers to retain

the advantages of `eval()` without its

security drawbacks.

IV. ADVANTAGES

 The suggested secure wrapper of Python's

eval() function has some significant

advantages, particularly in web

development and artificial intelligence

programming. It enhances security greatly

by checking user input for malicious

patterns and restricting access to sensitive

system functions. It avoids the risk of code

injection, data theft, or system

compromise. Furthermore, through

creation of an execution environment, the

wrapper ensures that only specified

variables and safe expressions are

executed. This prevents unforeseen action

and enhances application stability. Another

advantage is its timeout functionality,

which shields the system from potentially

infinite loops or long calculations that

might be used to create denial-of-service

(DoS) conditions.

In addition, the wrapper is light in weight

and easy to embed in well-known Python

frameworks such as Flask or FastAPI.

Because of this, it is perfectly suited to

scalable web services and REST APIs. Its

component nature allows developers to

tailor safety rules and smoothly embed it

within current workflows without

requiring drastic adjustments. In general,

this method provides a practical and robust

means for securely running dynamic code

within real-time environments.

V. DISADVANTAGES

 Although the secure wrapper that has been

suggested for Python's eval() method

greatly improves security, it is not perfect.

One serious drawback is that it is still

based upon manual filtering of dangerous

135

keywords, which does not guarantee to

address all security risks. Savvy hackers

could easily obfuscate their malicious

input or employ roundabout techniques to

evade keyword checks. Also, the

elimination of Python's built-in functions

and modules in the interest of security can

limit functionality, closing down the scope

of expressions that may be evaluated by

users, impacting the flexibility of the

application in complex scenarios.

Another challenge is to strike the balance

between security and usability. Excessive

restriction on inputs may result in false

positives where legitimate expressions are

refused, annoying end-users. Further, the

timeout strategy, as beneficial as it is,

might not be adequate in all situations—

particularly when handling computations

that consume a lot of resources or

asynchronous behavior. Finally, because

the wrapper does not incorporate full-

fledged sandboxing or virtualization, it

cannot promise total isolation, and there

remains a residual risk for high-security

applications. These constraints imply that

although the wrapper represents an

important step forward over using eval()

directly, it must be used as one part of an

overall security plan.

VI. RESULTS

The safe_eval() wrapper was tested for

security, performance, and usability in

various environments as part of AI and

web.

1. Security Improvements

Known dangerous Python expressions

were successfully blocked by the wrapper:

the attempts to access files using

__import__('os').system('rm -rf /')),

__import__('os')()) - code injection

attempts, malicious recursion or fork

bombs, and more than 50+ test cases with

the attack payloads were safely rejected

without crashing the host application.

Intrinsic Python modules and functions

were constrained to avoid insecure access

to critical system operations.

2. Execution Control & Timeout

The signal module-based timeout

mechanism successfully terminated very

long-running expressions (e.g., infinite

recursive calls or very deep recursion).

Expressions that took more than the

designated time limit (2 seconds) were

terminated with a managed error message.

Provided reliable uptime and no crashes or

hangs in production environments.

 3. Web and AI Use Case Testing

Web Form Scenario: When used in a Flask

web form backend, the wrapper allowed

136

only mathematical formulas or pre-defined

safe variables to be evaluated.

Example: User input a + b was valid; input

__import__('os') was rejected.

AI Workflow Scenario: When AI

workflows have dynamic calculations

(e.g., parsing of custom formula) involved,

the wrapper supported flexible yet secure

string evaluation.

4. Performance Benchmark

The safe_eval() function added minimum

overhead (around 5–15 ms per call), which

is reasonable for most real-time systems.

In comparison to raw eval(), the secure

version was slower by 10–20% but

provided 100% safer execution.

VII. CONCLUSION

In our study here, we tackled an essential

security issue related to Python's eval()

function by introducing a secure and

flexible execution wrapper. The

conventional application of eval() is risky

in AI and web applications because it can

execute arbitrary and malicious code. Our

solution overcomes such weaknesses

through the implementation of a keyword-

based filtering system, sandboxed

execution context, and timeout of

executions. This combination provides a

secure evaluation of only safe expressions

and no access to Python's native functions

or system operations. This way, developers

can now use dynamic expression

evaluation in user-facing applications in a

safe manner and still have system integrity

and performance. This safe wrapper forms

a basis for safer AI model interfaces,

education tools, and web-based

computation platforms, enabling

responsible and secure Python

programming practices.

REFERENCE

[1] Van Rossum, G., & Drake, F. L.

(2009). The Python Language

Reference Manual. Network Theory

Ltd.

[2] Lutz, M. (2013). Learning Python (5th

ed.). O'Reilly Media.

[3] Beazley, D. M. (2009). Python

Essential Reference (4th ed.). Addison-

Wesley.

[4] Summerfield, M. (2010). Programming

in Python 3: A Complete Introduction

to the Python Language. Addison-

Wesley.

[5] Pilgrim, M. (2004). Dive Into Python.

Apress.

[6] OWASP Foundation. Injection Attacks

and Use of eval().

https://owasp.org/www-

community/attacks/Code_Injection

[7] Python Software Foundation.

ast.literal_eval() — Safer alternative to

eval.

137

https://docs.python.org/3/library/ast.ht

ml

[8] Python Wiki. Sandboxed Python.

https://wiki.python.org/moin/Sandboxe

dPython

[9] Red Hat Security Blog. Understanding

Sandbox Security Models.

https://securityblog.redhat.com

[10] GitHub - PyPy Sandbox.

https://doc.pypy.org/en/latest/sandbox.

html

[11] Manna, D., & Chattopadhyay, S.

(2017). A Comparative Study on

Sandboxing Techniques for Secure

Computing. Procedia Computer

Science, 115, 702–709.

[12] Rahman, M. A., & Khan, R. (2019).

Securing Python Web Applications

Against Injection. International Journal

of Computer Applications, 182(31),

23–30.

[13] Heule, S., Jovanovic, D., & Vechev, M.

(2016). Safe and Efficient Sandboxing

of JavaScript. USENIX Security

Symposium.

[14] Salzman, D. (2020). Secure Execution

of Untrusted Code in Python. ACM

Digital Library.

[15] Chothia, T., & Novakovic, C. (2015). A

Secure and Usable Sandbox for

Python. IEEE International Conference

on Trust, Security and Privacy.

[16] Real Python. Why You Shouldn't Use

eval() in Python.

https://realpython.com/python-eval-

function/

[17] Stack Overflow. What's the safest way

to use eval in Python?

https://stackoverflow.com/questions/22

20699/

[18] Towards Data Science. Evaluating

User Input in Python – Risks and

Alternatives.

https://towardsdatascience.com

[19] Mozilla Developer Blog. Sandboxing

Approaches in Modern Applications.

https://hacks.mozilla.org

[20] GitHub Gist. SafeEvalWrapper.

https://gist.github.com

[21] IBM Developer. Using Python securely

in ML pipelines.

https://developer.ibm.com/articles

[22] TIOBE Index. Programming Language

Security Ratings.

https://www.tiobe.com/tiobe-index

[23] Django Docs. Best Practices for Secure

Code Execution.

https://docs.djangoproject.com/en/stabl

e/topics/security/

[24] Flask Docs. Security Tips for Web

Developers.

https://flask.palletsprojects.com/en/late

st/security/

[25] GitHub Security Lab. Eval

Vulnerabilities in Python.

https://securitylab.github.com.

