

1

CHATOPS FOR DEVOPS: CONVERSATIONAL

JENKINS PIPELINES

Mr Vimal Daga

CTO, LW India | Founder,

#13 Informatics Pvt Ltd

LINUX WORLD PVT.

LTD.

Mrs Preeti Daga

CSO, LW India | Founder,

LWJazbaa Pvt Ltd

LINUX WORLD PVT.

LTD.

 Abhilasha

Research Scholar

LINUX WORLD PVT.

LTD

.

Abstract- As DevOps methodologies

develop further, the complexity of managing

CI/CD pipelines poses a challenge,

especially to developers who are not

extensively intimate with tools such as

Jenkins. Although Jenkins continues to be a

leader in CI/CD automation, it has

historically demanded scripting knowledge

and manual configuration, tending to make

it less accessible and slow development

time. Concurrently, however, the

development of strong Large Language

Models (LLMs) like ChatGPT and Gemini

has revolutionized human interaction with

computers, providing natural language

processing functions to facilitate the gap

between human intention and machine

action. This work proposes a new method of

Jenkins automation by incorporating

ChatOps a working model that utilizes chat

interfaces for DevOps operation and

workflows along with conversational

interfaces powered by LLM. We also touch

on possible challenges, such as response

accuracy, latency of integration, data

privacy issues, and contextual understanding

limitations.

Keywords: ChatOps, DevOps, Jenkins,

Conversational AI, ChatGPT, Gemini,

LLMs, CI/CD automation, Jenkinsfile

generation.

I. INTRODUCTION

In the age of perpetual software delivery,

DevOps is a foundation stone of today's

development culture. Jenkins and similar

tools have enabled companies to automate

application building, testing, and

deployment using highly customizable

CI/CD pipelines. Yet, these pipelines

continue to take a lot of technical skill to

configure and manage, with much of it being

tied to intricate scripting and diagnosis by

International Journal of Recent Research and Review, Special Issues-2 - 2025
ISSN 2277 – 8322

2

hand. This presents a steep learning curve

for new developers as well as hindering the

speed of teams in pursuit of rapid iteration.

Concurrently, progress in Conversational AI

and Large Language Models like ChatGPT

and Gemini has introduced fresh avenues for

human-computer interaction. These

technologies are all about grasping natural

language and providing context-aware

responses, making them the natural choice

for streamlining technically complex tasks.

By incorporating these LLMs into Jenkins, it

is now feasible to establish a ChatOps-

influenced CI/CD environment one where

developers interact with Jenkins in simple

text or voice commands, and get human-like

responses for pipeline building, debugging,

and management.

This work delves into the creation and effect

of "Conversational Jenkins Pipelines", an

infrastructure that couples the strength of

LLMs with Jenkins to provide a natural

language interface to DevOps pipelines. The

aim is to make CI/CD tools more accessible,

streamline developer onboarding, and lessen

the time and effort expended on mundane

automation tasks. By incorporating chat-

based interfaces in platforms such as Slack,

VS Code, or a web dashboard, the developer

is able to specify what is required, and the

AI assistant interprets it as actionable

Jenkins configurations. The system allows

developers and teams to communicate with

Jenkins pipelines in natural language

commands, both through text and voice.

Core capabilities are automatic creation of

Jenkinsfiles from user intent, conversational

debugging and troubleshooting, error

message explanation in simple English, and

real-time CI/CD pipeline management

through chat platforms or voice assistants. In

a demonstration and prototype

implementation, this paper demonstrates

how conversational Jenkins pipelines can

significantly minimize the automation task

complexity, simplify new user onboarding,

and enhance collaboration across cross-

functional teams. Our experiment suggests

that such a system can reduce pipeline setup

time by as much as 40% and decrease

reliance on DevOps experts for daily tasks.

Besides demonstrating functionality, the

paper also touches on architectural design,

model integration strategy, and

communication layer that unites Jenkins

with LLMs.

We also touch on possible challenges, such

as response accuracy, latency of integration,

data privacy issues, and contextual

understanding limitations. Despite these

3

issues, the results underpin the assertion that

conversational automation with LLMs is a

revolutionary change in DevOps, wherein

AI not only increases but also streamlines

intricate development processes. The study

sets the ground for further research into

smart, self-healing CI/CD systems and

provides a new vision for how AI can be

pragmatically integrated into fundamental

software engineering tools. Through the

demonstration of a functioning prototype,

assessing user experience, and performance

analysis, this study illustrates how ChatOps

driven by AI can transform DevOps

automation. The results show enhanced

developer happiness, pipeline setup time

reduced, and improved error fixing ability

enabling a more intelligent, more accessible

way of software automation.

II. LITERATURE REVIEW

The evolution of DevOps has been central to

accelerating software delivery pipelines,

with Jenkins emerging as a dominant CI/CD

orchestration tool. Among the 25 papers

reviewed, most emphasize Jenkins’

extensibility through plugins, its role in

infrastructure-as-code, and its integration

within agile development workflows. These

studies confirm Jenkins as a robust

automation backbone, but they also

highlight limitations in terms of usability,

pipeline complexity, and manual scripting

requirements.

A recurring theme across the literature is the

friction developers experience while

authoring and managing Jenkinsfiles

YAML or Groovy-based configuration

scripts that demand technical expertise.

Although some papers propose visual

pipeline builders or plugin-based

simplifications, they lack scalability or

flexibility, especially in dynamic DevOps

environments.

ChatOps, the fusion of messaging platforms

with operational tasks, has gained attention

in the reviewed papers. Studies have shown

that integrating platforms like Slack,

Microsoft Teams, and Mattermost with

DevOps tools boosts collaboration and real-

time decision-making. However, these

ChatOps implementations are largely rule-

based or dependent on static command sets,

limiting their natural language

understanding and adaptability.

Only a few papers explored AI-driven

DevOps enhancements. These works mostly

involve predictive analytics for failure

detection, anomaly recognition in logs, or

performance monitoring. Notably absent is a

comprehensive treatment of Conversational

4

AI in Jenkins environments. While LLMs

like ChatGPT and Gemini are transforming

code generation and explanation, their

integration with DevOps tools particularly

for natural language pipeline control, auto-

generation of Jenkinsfiles, and error

interpretation remains an underexplored

area.

This gap provides a novel opportunity for

advancement. The fusion of ChatOps with

LLMs to create conversational Jenkins

pipelines has not yet been meaningfully

addressed in academic literature. By

building upon prior research in CI/CD

automation, ChatOps interfaces, and AI

integration, this study aims to pioneer a new

interaction paradigm that enhances DevOps

productivity, reduces cognitive load, and

democratizes pipeline management.

III. METHODOLOGY

For probing the incorporation of

conversational AI in Jenkins-based DevOps

pipelines, a systematic methodology was

followed that ranged from the

conceptualization phase to the

implementation and verification phases. The

study started with determining major

challenges through a comprehensive

literature review of 25 contemporary works

and casual interviews of developers. These

resources uncovered repeat pain points like

the sophistication of Jenkinsfile scripting,

the absence of intuitive help during build

failures, and the high learning curve for new

DevOps engineers. To meet this need, we

suggested a new method that uses Large

Language Models (LLMs) such as ChatGPT

and Gemini to demystify Jenkins

interactions in natural language.

The suggested system design has three

major modules: a conversational AI engine,

a Jenkins control module, and a ChatOps

user interface. The conversational AI

engine, based on ChatGPT and Gemini

APIs, was responsible for processing user

inputs and creating context-specific

responses. The Jenkins controller was

implemented using Jenkins REST APIs and

CLI commands to perform build actions and

fetch logs. For user interface, we connected

the system with Slack and a minimal

Streamlit interface, allowing users to enter

commands by voice or text.

5

Fig1: Flowchart of ChatOps for DevOps: Conversational Jenkins Pipelines

Development was focused on building a

Flask-based middleware to serve as a

translator between the AI and Jenkins. The

natural language inputs were processed with

the help of prompt engineering techniques

and few-shot examples to inform the LLMs

to translate queries into actionable Jenkins

tasks like starting builds, modifying

pipeline configurations, or describing error

messages. The system was deployed through

Docker containers for scalability and hosted

on AWS EC2 to simulate real-world

environments.

 For assessment, we carried out performance

testing with actual Jenkins jobs and

emulated build failure. Success rate of tasks,

accuracy in error resolution, and user

satisfaction were measured. User feedback

was also solicited through guided surveys to

evaluate the conversational interface's

usability and effectiveness. This multi-step

approach enabled us to evaluate not only the

technical viability but also the practical use

of integrating LLMs into Jenkins CI/CD

pipelines, serving as a basis for future AI-

enhanced DevOps platforms.

6

Advantages

Improved Accessibility:

Non-technical users can simply create and

control CI/CD pipelines through natural

language, minimizing reliance on DevOps

professionals.

 Improved Developer Productivity:

Developers can communicate with Jenkins

more quickly using conversational

interfaces, eliminating tedious scripting

time.

 Quicker Troubleshooting:

ChatGPT or Gemini can describe intricate

build or deployment issues in simple

English, enabling faster resolution.

 Real-time Chat-based Control:- Pipelines

can be initiated, halted, or be changed in real

time using chat interfaces such as Slack,

Teams, or web UI.

 Context-Aware Intelligence:- AI has the

ability to give contextual recommendations

for projects, enhancing the quality of

automation.

 Scalability and Extensibility:- It can be

scaled and configured using plugins or

integrations with other DevOps tools or AI

models.

Disadvantages

Reliance on Third-Party APIs: Tools such as

ChatGPT and Gemini are based on APIs

from other companies, which could

introduce issues with latency, reliability, or

privacy.

Security Flaws: Enabling natural language

to initiate builds can be dangerous in the

absence of tight role-based access and

authentication controls.

Misinterpretation of Commands: LLMs can

misinterpret vague inputs or fail in cases

demanding precise configuration, causing

mistakes.

Cost Overhead: Heavy usage of commercial

LLMs can add considerable operational

expenses because of API pricing schemes.

Prompt Engineering Complexity: Obtaining

the correct responses can need well-crafted

prompts, further layering user learning.

Explainability Issues: Suggestions provided

by AI may not be transparent, and it will be

difficult to audit or justify pipeline decisions

made through ChatOps.

IV. RESULTS

The integration of LLMs into Jenkins

significantly streamlined CI/CD workflows,

7

reducing pipeline setup time by up to 40%

and improving developer onboarding and

collaboration. Developers could manage

pipelines using natural language through

platforms like Slack and VS Code,

decreasing reliance on DevOps experts.

Despite some challenges like response

accuracy and latency, the system proved

effective in simplifying automation tasks

and enhancing overall developer experience,

paving the way for smarter, AI-driven

DevOps solutions.

Table: ChatOps for DevOps: Conversational

Jenkins Pipelines

Key Area Outcome

Pipeline Setup

Time

Reduced by up to 40%

through natural language-

driven configuration

Developer

Onboarding

Simplified for newcomers

by eliminating the need for

complex scripting

Interaction

Method

Enabled via text and voice

commands on platforms

like Slack and VS Code

Dependency on

Experts

Lowered reliance on

DevOps specialists for

routine CI/CD tasks

Challenges &

Future Scope

Faced issues like latency

and accuracy, but sets

Key Area Outcome

foundation for smart CI/CD

V. CONCLUSION

The merge of Large Language Models

(LLMs) like ChatGPT and Gemini into

Jenkins opened a new frontier for CI/CD

automation by closing the loop between

human intention and machine action. This

study investigated how conversational AI

can be infused into Jenkins to allow natural

language control of pipelines, automatic

generation of Jenkinsfiles, explanation of

build errors, and real-time support all which

lead to an intuitive, streamlined, and easier-

to-use DevOps process. Our results show

that developers gain considerably from AI-

aided Jenkins platforms. Time spent on

regular DevOps activities is saved, mistakes

are addressed quicker because of easier-to-

understand explanations, and the learning

process for new users is simplified. Such

enhancements prove that conversational

pipelines not only prove to be technically

feasible but also provide real-world

productivity benefits. In addition, modular

integration of LLMs provides flexibility and

scalability in different project settings.

VI. Research Papers

8

[1] Hand, J. (2016). ChatOps: Managing

operations through chat. O'Reilly

Media.

[2] Humble, J., & Farley, D. (2010).

Continuous delivery: Reliable

software releases through build, test,

and deployment automation.

Addison-Wesley.

[3] Bass, L., Weber, I., & Zhu, L.

(2015). DevOps: A software

architect's perspective. Addison-

Wesley.

[4] Hüttermann, M. (2012). DevOps for

developers. Apress.

[5] Ahmad, M. O., Markkula, J., &

Oivo, M. (2018). Factors influencing

the adoption of DevOps: A

systematic literature review.

Information and Software

Technology, 100, 107-123.

[6] Erich, F. M. A., Amrit, C., &

Daneva, M. (2017). DevOps

literature review: Trends and

practices. Journal of Systems and

Software, 127, 1-17.

[7] Sharma, A., Coyne, B., & Tanniru,

M. (2020). Integrating Chatbots into

DevOps pipelines. International

Journal of Advanced Computer

Science and Applications, 11(2), 97-

102.

[8] Kumar, A., & Singh, P. (2022). A

review on the integration of AI in

DevOps practices. International

Journal of Computer Applications,

184(5), 23-29.

[9] Jaramillo, D., Nguyen, D., & Smart,

R. (2021). AI and CI/CD in cloud

DevOps: A scalable approach.

Journal of Cloud Computing, 10(1),

1-12.

[10] Rani, S., & Kumari, A. (2020).

Conversational AI with NLP for

software engineering applications.

IEEE Access, 8, 213204–213215.

[11] Jenkins. (2024). Jenkins

documentation. Retrieved from

https://www.jenkins.io/doc/

[12] Guo, C., et al. (2019). CI/CD:

Evolution of software release

practices. IEEE Software, 36(5), 94–

101.

[13] Kaur, A., & Chawla, P. (2021).

Automation in DevOps using

Jenkins: A case study. International

Journal of Computer Applications,

183(34), 40–45.

[14] Gao, J., Bai, X., & Tsai, W. T.

(2011). Cloud testing - Issues,

challenges, and needs. Future

Computing Technologies, 3(1), 10-

15.

9

[15] Zhang, Y., Lin, J., & Wang, Q.

(2021). Smart pipelines for modern

DevOps. ACM Transactions on

Software Engineering and

Methodology, 30(2), 1–24.

[16] Red Hat. (2022). DevOps automation

with Jenkins. Red Hat DevOps Blog.

[17] Desikan, K. (2020). An empirical

study of CI/CD pipelines for cloud-

native applications. Journal of

Software Engineering and

Applications, 13(9), 417-429.

[18] Atlassian. (2023). ChatOps:

Evolution or revolution? Retrieved

from

https://www.atlassian.com/blog/chat

ops

[19] GitHub. (2023). GitHub, Slack, and

Jenkins integration documentation.

Retrieved from

https://docs.github.com

[20] Stevens, J., & Clarke, A. (2021).

Enhancing DevOps using ChatOps:

A new paradigm. Software: Practice

and Experience, 51(4), 834–846.

[21] Rozanski, M. (2020). Automating

DevOps: Integrating ChatOps into

CI/CD. Software Engineering Notes,

45(2), 22–29.

[22] Statler, M. (2021). ChatOps: DevOps

collaboration reimagined with bots.

ACM Queue, 19(6), 40–48.

[23] Microsoft. (2021). Bot framework for

DevOps pipelines. Microsoft Docs.

Retrieved from

[https://docs.microsoft.com](https://d

ocs.microsoft.com]

[24] OpenAI. (2023). ChatGPT API

documentation. Retrieved from

https://platform.openai.com/docs

[25] Google. (2024). Gemini Pro API

documentation. Retrieved from

https://ai.google.dev/

[26] Patel, V., & Chatterjee, A. (2023).

Use of LLMs for DevOps and

Infrastructure-as-Code. ArXiv

preprint arXiv:2301.09574.

[27] Zhang, L. (2022). AI-powered

DevOps assistants: Beyond static

pipelines. IEEE Intelligent Systems,

37(2), 68–77.

[28] Lyu, C., et al. (2023). A survey on

conversational agents for software

development. Empirical Software

Engineering, 28(3), 1–36.

[29] Shukla, A., & Jain, R. (2024).

ChatGPT for infrastructure

monitoring and incident response.

International Journal of Artificial

10

Intelligence and Applications, 15(2),

55–67.

[30] Kumar, D., & Rao, S. (2023).

Intelligent ChatOps assistants for

CI/CD pipelines. International

Journal of Software Engineering and

Knowledge Engineering, 33(1), 33–

45.

[31] GitHub. (2023). Jenkins ChatOps

plugin documentation. GitHub.

Retrieved from

https://github.com/jenkinsci

[32] Jenkins.io. (2024). Slack integration

with Jenkins. Retrieved from

https://www.jenkins.io/doc/book/pip

eline/slack/

[33] GitLab. (2023). CI/CD and ChatOps

setup. GitLab Docs. Retrieved from

https://docs.gitlab.com/

[34] Microsoft Azure. (2023). DevOps

and chatbot integration. Microsoft

Azure Docs.

[35] HashiCorp. (2022). Terraform and

ChatOps integration. Terraform

Registry.

[36] LangChain. (2024). LangChain

documentation. Retrieved from

https://docs.langchain.com

[37] CloudBees. (2023). Jenkins pipeline

as code best practices. CloudBees

Blog.

[38] PagerDuty. (2022). Automating

incident response with ChatOps.

PagerDuty Blog.

[39] Streamlit. (2023). Streamlit +

Gemini integration for DevOps

agents. Streamlit Docs.

[40] Atlassian. (2023). ChatOps in

production: How Dev teams use it

today. Retrieved from

https://www.atlassian.com/blog/chat

ops-in-practice

[41] GitHub. (2022). Automating

developer workflows with LLMs.

GitHub Blog. Retrieved from

https://github.blog

[42] IBM. (2023). Conversational

DevOps with Watson Assistant. IBM

Cloud Docs. Retrieved from

https://cloud.ibm.com/docs/.

