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Abstract- Subband Adaptive Filter Architecture
techniques have been recently used for subband 
adaptive filters, since some of the applications such as 
acoustic echo cancellation and wideband active noise 
control need adaptive filters with thousands of taps, 
which result in high computational complexity and low 
convergence rate. By the use of subband adaptive 
algorithms, the computational complexity may be 
reduced along with convergence rate; however, a delay 
is introduced in the signal path. To remove the delay, 
the delayless subband adaptive filter architecture  open 
loop  structures have been introduced. This paper 
presents a new open loop delayless subband adaptive 
filter structure and closed loop suband adaptive filter , 
where the performance concerning the mean square 
error of the subband adaptive algorithm, caused due to 
the aliasing existing in the subband structure, is 
superior to the results obtained up to now for open loop  
delayless structures.In applications like echo sound 
cancellation and speech enhancement, where there is 
need to track   continuously, adaptive filtering is usually 
used. Long adaptive filters gives problems like low 
convergence and high complexity. Subband adaptive 
filtering has been introduced to overcome these 
problems. The filter banks used in subband adaptive 
filtering introduce large delays. In order to compensate 
for the delays, delayless subband adaptive filtering is 
introduced. Delayless subband adaptive filtering is used 
in both open loop and closed loop configuration, where 
the subband filters are transformed to a fullband filter 
using a weight.
Keywords - convergence, least mean square, inter 
symbol interference, nlms, critically subband sampled.

I. INTRODUCTION

Subband adaptive filtering is rapidly becoming one of 
the most effective techniques for reducing 
computational complexity and improving the 
convergence rate of algorithms in adaptive signal 
processing applications. Discuss the basic principles 
that underlie the design and implementation of 
subband adaptive filters. Comprehensive coverage of 
recent developments, such as multiband tap–weight 
adaptation, delayless architectures, and filter–bank 
design methods for reducing band–edge effects are 
included. Several analysis techniques and complexity 
evaluation are also introduced in this report to provide 
better understanding of subband adaptive filtering [1].

   Fig.1. Subband adaptive filtering

Adaptive filtering is a widespread technique in many 
applications. For acoustic echo cancellation (AEC) 
hands-free telephony very large adaptive filters are 
used in system identification on text, whereas in 
digital communications, adaptive filters perform the 
channel distortion equalization [2]. The present need 
for increased throughput in new systems also results 
in an increase of the equalizer length. In these two 
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areas, there is a demand for efficient and low 
complexity algorithms. 

II. DELAYLESS SUBBAND ADAPTIVE 
FILTERING WITH SUBBAND TO FULLBAND 

TRANSFORM

As suband adaptive filters in general, delayless 
subband adaptive filters consist of two main parts, a 
filtering operation and a coefficient adaptation 
operation. The filtering operationis performed by a 
fullband filter in the time-domain, see fig. 2. In a 
practical implementation, a long fullband filter has 
high computational complexity. In some icases it may 
be preferable to implement the fullband filter partially 
in the frequency doman [3].

y(n) = fT ([n/D])x(n)                                      (1)                          

where f (k) = [f0(k), . . . , fLf−1(k)]T is a vector 
containing fullband filter coefficients at time instant k. 
The variable k denotes the subband signal time index 
which is related to the full rate time index n according 
to k=∟(n/D) where [.] denotes round-off towards the 
closest integer towards minus infinity. Vector  x(n) = 
[x(n), . . . , x(n − Lf + 1)]

T is the input signal vector. The 
fullband filter length is denoted by Lf . A fullband 
error signal e(n) is obtained as[1]

e(n) =  d(n) –  y(n)                                                (2)

Consider a filter bank with M subbands,   causal FIR 
analysis filters hm(n) of length Lh, and decimators with 
decimation rate D. Input signal x(n) is decomposed 
into subband signal xm(k) according to

xm (k) = hT
mx(kD).     m= 0…..M-1                    (3)                                                        

where, hm = [hm,0, . . . , hm,Lh−1]
T and x(kD) is an 

input signal vector of corresponding length.

Fig.2 Delayless subband adaptive filters with open loop and 
closed loop configurations

The delayless subband adaptive filter has two 
operation configurations, open loop and closed loop. 
In the open loop configuration, the desired signal is 
decomposed into subband signals as [3]
dm (k) = hT

md(kD) .                                                 (4)
and subband error signals em(k) are obtained as

e(n) =  d(n) –  y(n)   =  dm (k)-  wT
m (k)xm (k)      (5)                                      

where wm(k) = [wm,0(k), . . . , wm,Lw−1(k)]T is a vector 
containing the adaptive filter coefficients at time 
instant k, and xm(k) = [xm(k), . . . , xm(k − Lw + 1)]T is 
an input subband signal vector. The length of the 
adaptive filters Lw is related to the full band filter 
length Lf and the decimation rate D as Lw = Lf/D. In 
the closed loop configuration, the subband error 
signals are obtained by decomposing the full band
error signal into subband error signals [4].

em (k) = hT
me(kD)                                               

   (6)                     

In both configurations, a Normalized Least Mean 
Square (NLMS) algorithm is used in the subbands. 
Other adaptive algorithms can also be used, such as 
Recursive Least

wm(k + 1) = wm(k) + μm(k)em(k)x*m(k).                  (7)                           

The time-varying subband step size μm is calculated 
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μm(k) = μ/ Pm(k)                                                      (8)                      

where μ is a global step size and Pm(k) is the short 
time subband power estimate of the mth subband 
signal xm(k)

Pm(k)  =   xH
m(k)xm(k)                                          (9)                    

                       Lw

The fullband coefficients are obtained from the 
subband coefficients by means of a linear coefficient 
transform

f (k) = Tw(k)                                                         (10)                  

where, w(k) = [wT
0 (k), . . . ,wT

M−1(k)]T is a            
adaptive filter coefficient vector at time instant k, and 
matrix T is the subband-to-fullband transformThe 
open loop configuration is summarized by the 
equations for all n.

y(n)=fT([n/D])x(n)                                                  (11)                      
xm (k) = hT

mx(kD)                                                   (12)                        
dm (k) = hT

md(kD)                                                    (13)                       
ym (k) = wT

m (k)xm(k)                                              (14)                      
e(n) =  d(n) –  y(n)                                                  (15)                     
Pm(k)  =   xH

m(k)xm(k)                                                                
                       Lw                                                                                                                                                                                                                          
μm(k) = μ/ Pm(k)                                                    (16)                         
wm(k + 1) = wm(k) + μm(k)em(k)x*m(k).                 (17)                           
f (k) = Tw(k)                                                         (18)                        

The closed loop configuration is summarized by the 
equations for all n.

y(n)=fT([n/D])x(n)                                                  (19)                        
e(n) =  d(n) –  y(n)                                                (20)                         
for all k =  [n/D]    
xm (k) = hT

mx(kD)                                                   (21)                      
em (k) = hT

me(kD)                                            (22)                           
Pm(k)  =   xH

m(k)xm(k)                                    (23)                                
                       Lw    
μm(k) = μ/ Pm(k)                                               (24)                             

wm(k + 1) = wm(k) + μm(k)em(k)x*m(k).            (25)                             
f (k+1) = Tw(k+1)                                          (26)                                

                                                                                                                                                                          
subband-to-fullband transforms in combination with 

filter banks for the subband signal decompositions is 
presented.

III. FILTER BANK AND TRANSFORM    
CONFIGURATION

Uniform DFT Filter Banks

A uniform DFT Filter Bank consists of M analysis 
filters Hm (z) (Fig. 3), which are modulated from a 
prototype filter H(z) according to[5].

Hm(z)= h(zWm
m)                                                                     

whereWM = e−j2π/M.  Let Al(z), l = 0, . . . , M−1, denote 
the polyphase components of the prototype filter H(z)    

                             (27)   
Accordingly, the polyphase decomposition of all 
analysis filters is given[6]

              (28)                            

      
               Fig.3 Direct Form Uniform-DFT Filter Bank

Analysis Filter Bank Design

In this section an analysis filter bank design procedure 
for the delayless subband adaptive filter is described. 
Lossless power complementary filter banks with 
minimum phase property is designed. The reason for 
the use of this design method is that the design 
procedure is applicable for both uniform-DFT (M-
channel filter bank and tree structured filter banks 
(two-channel filter bank design). The power 
complementary constraint for an M-channel analysis 
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filter bank is given by [7]

                   
Where, the analysis filters Hm(z) are derived from a 
lowpass prototype analysis filter H(z) with real 
coefficients according to Hm(z) = H(zWm

M). With the 
spectral factorization Q(z) = H(z)H(z−1), where Q(ejω) 
is a real-valued frequency function and Q(ejω) ≥ 0 
[22], the power complementary constraint can be 
rewritten                                 

                                   (29)                 
The transfer function Q(z) is a zero phase FIR filter 
with coefficients qi   [8]                                  

                             (30)                      
The power complementary constraint can be 
transformed to the time-domain according.                             

                                 (31)                      
where δi = 1 for i = 0 and zero otherwise. Since
                               

                                                                      

IV. SIMULATED AND MEASURED RESULT

Open Loop delayless subband filter result 

The identification of a length Np = 512 FIR system is 
considered. The input signal is a colored noise 
sequence generated by passing gaussian white noise 
by a first-order IIR filter with a pole located at z = 0.9. 
Experiments open loop delayless filter were
performed with the fullband normalized LMS, and 
with the delayless subband structure of fig. 2  using 
perfect reconstruction cosine modulated filter banks 
and M = 2 subbands. The step-sizes were selected 

such that the best convergence rate µ= 0.1 presents the 
MSE evolutions. The new delayless subband structure 
presents a better convergence rate than the LMS 
algorithm, due to the power normalization of the step-
sizes. It converges to an MSE of the order of the stop
band attenuation of the analysis filter (which is around 
-18 db for M = 4, -16 dB due to the assumption of non
overlapping non-adjacent analysis filters Table I [9].

Table I

Np M   μ dB
512   2    0.1 -16
512   4   0.1 -15

Fig.4 Simulation Result of open loop system z=. 9, M=2

Closed Loop Delayless Subband Adaptive result

Fig. 5 Simulation Result of closed loop system M=8    
Np=64
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Table II
       Np         M        µ        dB
       64             8           0.1         -12

Fig.6 Simulation  Result of open loop system z= .9  M=4

Fig.7 Simulation Result of closed loop system M=8     
Np=128

Table III
       Np         M        µ        dB  
       128             8           0.1         -12

V. CONCLUSIONS & FUTURE WORK

The convergence rate behavior of the open loop and 
closed loop configurations of the delayless subband 
adaptive filters architecture is studied. It is shown that 
the subband to-fullband transform greatly affects the 
performance in terms of the fullband mean square 
error for the open loop configuration and in terms of 
the convergence speed for the closed loop 
configuration. It is shown that based on the results for 
the closed loop case, a transform with optimal 
convergence performance can be derived. A novel 
delayless subband adaptive filter is presented, which 
employs polyphase adaptive filters This convergence 
has been analyses and compared to the behavior of the 
fullband LMS algorithm through of computer 
MATLAB simulations. We can observe that initially
the oversampled subband structure presents better 
convergence rate. We proposed a closed loop structure 
with the following features: 
1. Less MSE curve.                                             
2. Better convergence.
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